## Essential Elements <br> Math Pacing Guide



August and September

## Background

The Essential Elements Math Pacing Guide creation was inspired by realizing that there is a small amount of information found on the internet to help support educators who teach those who follow an alternate curriculum for our amazing $1 \%$ of the student population in education. I wanted to create something that could help serve as a guide, a support, an understanding of how to hold our students to high academic achievement, just like their regular education peers.

Regular education materials are abundant and come with pacing guides with how to implement the prescribed curriculum that the school choose to buy into. Within those curriculums, a good majority of publishers incorporated how to differentiate Instruction for struggling learners, for English Language Learners and/or English as a Second Language learners. However, there does not seem to be a supplementary curriculum that aligns for how to modify instruction and materials for those who follow the alternate curriculum so the $1 \%$ of students with disabilities aligned to the alternate curriculum could also learn a modified version of the same materials as their non-disabled peers.

Your partner in education, Jeanette Nowak

Updated April 2022

## Table of Contents

August and September Outline ..... 4
How to Access Math Instruction and Materials from Unique. ..... 5
Understanding Differentiated Levels In Unique ..... 6
Measuring Success by the Essential Elements Standards ..... 6
August Math Pacing Guide $6^{\text {th }}$ Grade ..... 7-26
August Math Pacing Guide $7^{\text {th }}$ Grade ..... 27-59
August Math Pacing Guide $8^{\text {th }}$ Grade ..... 60-71
September Math Pacing Guide $6^{\text {th }}$ Grade ..... 72-92
September Math Pacing Guide $7^{\text {th }}$ Grade ..... 93
September Math Pacing Guide $8^{\text {th }}$ Grade ..... 94
Credits ..... 95

## August and September Outline

## Standards covered during August:

- M.EE.6.NS. 1 - Compare the relationships between two unit fractions.
- M.EE.7.NS. 1 - Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.
- M.EE.7.RP.1-3 - Use a ratio to model or describe a relationship.
- M.EE.8.NS.1 - Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.


## Standards covered in September:

- M.EE.6.NS.1 - Compare the relationships between two unit fractions.
- M.EE.6.NS.5-8 - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values.
- M.EE.7.NS. 1 - Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.
- M.EE.7.RP.1-3 - Use a ratio to model or describe a relationship.
- M.EE.8.NS. 1 - Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.

According to the Dynamic Learning Maps (DLM) website, these are the commonly tested standards that are used for the DLM assessment.

1. https://www.n2y.com/unique-learning-system/
2. Log in using the provided username and password you received
3. Click on Unique Learning System
4. Click on the three lines $\longrightarrow$ U@learning system
5. Select Monthly Lessons/Unit Lessons
6. Select Math
a. When selecting materials, select PDF icon to save and print
7. Select Math Story Problems - Addition
a. Fractions
8. Select Math Story Problems - Subtraction
a. Fractions
b. Positive and negative numbers
9. Select Algebra
a. Ratios

## Understanding Differentiated Levels In Unique

- Level 3 Learners - can read text and can participate more independently in the lesson (Independent)
- Level 2 Learners- require pictorial support and require mild to moderate support to participate in the lesson (Supported)
- Level 1 Learners- require extensive supports to participate in the lesson (Participatory).


## Measuring Success by the Essential Elements Standards

Students who take DLM assessments are instructed and assessed on Essential Elements. Essential Elements are grade-specific expectations about what students with the most significant cognitive disabilities should know and be able to do. The Essential Elements relate to college and career readiness standards for students in the general population.

## August Math Pacing Guide $6^{\text {th }}$ Grade

M.EE.6.NS.1 - Compare the relationships between two unit fractions.

## Learning Goal:

- Level 2-3 - I will compare two unit fractions.
- Level 1-I will count fractional objects.


## Essential Questions:

- How can I represent these fractions?
- What is the relationship between the two fractions?
- Are they equivalent?
- Which fraction is larger/smaller?


## Vocabulary:

- numerator - the top number in a fraction, which shows the number of parts of the whole taken.
- denominator - the bottom number in a fraction, which shows the number of parts the whole has been divided into.
- equal - alike in size, value or amount to something else.
- fraction - a representation of a division of a number; a part of a whole.
- half - either of two equal parts of something.
- quarter - one of four equal parts into which something is divided.
- whole number - a positive integer or zero. 1, 15, 30 and 894 are examples.

LEARNING MAPS
Mini-Map for M.EE.6.NS. 1
Subject: Mathematics
The Number System (NS)
Grade: 6

## Learning Outcome

| DLM Essential Element | Grade-Level Standard |
| :--- | :--- |
| M.EE.6.NS. 1 Compare the relationships between two unit <br> fractions. | M.6.NS.1 Interpret and compute quotients of fractions, and <br> solve word problems involving division of fractions by fractions <br> (e.g., by using visual fraction models and equations to represent <br> the problem). |

## Linkage Level Descriptions

| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :---: | :---: | :---: | :---: |
| Communicate understanding of a unit by recognizing a group of countable objects. Communicate understanding of "wholeness" by recognizing an object that has all the parts joined together. <br> Recognize parts of an object and the whole object. | Recognize two glasses with an equal amount of liquid. Divide familiar shapes, such as circles, squares, and/or rectangles, into two or more equal parts. | Recognize a fraction as a number expressed as a quotient of two integers in the form $a / b$, with $b$ not equal to zero. Demonstrate understanding of a unit fraction (e.g., 1/4) as the quantity formed by one part when a whole is partitioned into $n$ (e.g., 4) equal parts. Recognize the number above the fraction bar as the numerator and the number below the fraction bar as the denominator. | Communicate understanding that when a whole is divided into more parts, each part is smaller than when that same whole is divided into fewer parts (e.g., $1 / 5$ is smaller than $1 / 2$ because in $1 / 5$ the whole is divided into five equal parts and in $1 / 2$ the same whole is divided into two equal parts). | Communicate understanding that the numerator represents a number of equal parts and the denominator represents how many equal parts make up the whole. Compare fractions (i.e., which fraction is greater than and which is less than) using manipulatives. Add fractions with common denominators (e.g., $2 / 5+1 / 5=3 / 5$ ), and decompose fractions into sums of unit fractions with the same denominator |

[^0]| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :--- | :--- | :--- | :--- |
|  |  |  |  | (e.g., $3 / 7=1 / 7+1 / 7+$ <br> $1 / 7)$. |

## Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

## How is the Initial Precursor related to the Target?

In order to compare unit fractions, students need to gain experience with parts and wholes. This concept can literally be taught in every area of mathmatics (i.e., sets, number sense, counting, operations, patterns, measurement, data analysis, geometry, and algebra). Educators can start by having students work with sets, taking whole sets and breaking them into parts based on attributes. When counting, label what has been counted (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

## How is the Distal Precursor related to the Target?

As students begin to develop the understanding of sets and numbers, educators will highlight the differences between sets on the basis of overall area or discrete number using the words more, less, and equal. Provide students with multiple opportunities to count and compare a wide variety of sets with an increasing number of items, label the set (e.g., eight ball, 12 bears, 15 blocks), and move items in and out of the sets, labeling and counting them again (e.g., "You just said this set has 11 cubes; if I take two cubes, how many will you have?").

Being able to partition shapes requires a student to recognize a unit and recognize when basic objects are in whole and part forms. Work on this understanding by giving students an opportunity to observe, feel, or otherwise interact with objects and shapes in their whole and part forms. The general goal is to explore the differences between whole units or objects and parts of units or objects. As students explore shapes, label them and describe them as whole or part. Have students build (construct) and take apart (deconstruct) shapes.

[^1]9 \| Page

## Linkage Level Descriptions

| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :---: | :---: | :---: | :---: |
| Communicate understanding of a unit by recognizing a group of countable objects. Communicate understanding of "wholeness" by recognizing an object that has all the parts joined together. <br> Recognize parts of an object and the whole object. | Recognize two glasses with an equal amount of liquid. Divide familiar shapes, such as circles, squares, and/or rectangles, into two or more equal parts. | Recognize a fraction as a number expressed as a quotient of two integers in the form $a / b$, with $b$ not equal to zero. Demonstrate understanding of a unit fraction (e.g., 1/4) as the quantity formed by one part when a whole is partitioned into $n$ (e.g., 4) equal parts. Recognize the number above the fraction bar as the numerator and the number below the fraction bar as the denominator. | Communicate understanding that when a whole is divided into more parts, each part is smaller than when that same whole is divided into fewer parts (e.g., $1 / 5$ is smaller than $1 / 2$ because in $1 / 5$ the whole is divided into five equal parts and in $1 / 2$ the same whole is divided into two equal parts). | Communicate understanding that the numerator represents a number of equal parts and the denominator represents how many equal parts make up the whole. Compare fractions (i.e., which fraction is greater than and which is less than) using manipulatives. <br> Add fractions with common denominators (e.g., $2 / 5+1 / 5=3 / 5$ ), and decompose fractions into sums of unit fractions with the same denominator |

[^2]10 | Page
M.EE.6.NS. 1 Compare the relationships between two unit fractions.


| Map Key |  |
| :--- | :--- |
| IP | Initial Precursor |
| DP | Distal Precursor |
| PP | Proximal Precursor |
| T | Target |
| S | Successor |
| UN | Untested |
| Boxes indicate tested |  |
| nodes |  |

4
${ }^{4}$ https://dynamiclearningmaps.org/essential-elements/math
11 | Page

## Rubric of Student Success

M.EE.6.NS. 1 - Compare the relationships between two unit fractions.

| Level 3 Students will... <br> Successor and Target Students will... | Level 2 Students will... <br> Proximal Precursor and Distal Precursor Students will... | Level 1 Students will... <br> Initial Precursor Students will... |
| :---: | :---: | :---: |
| Level 3 <br> Apply use of fractional representations of $1 / 4,1 / 3,1 / 2,1 / 8$, and $1 / 10$ in the context of real-world problems and scenarios. | Level 2 <br> Recognize appropriate use of $1 / 2,1 / 3$, and $1 / 4$, in the context of real-world problems and scenarios. | Level 1 <br> Select fractional units as part of a realworld problem or scenario. |
| Successor <br> - Explain numerator <br> - Explain denominator <br> - Compare fractions using models <br> - Decompose a fraction into a sum of unit fractions with the same denominator <br> - Add fractions with common denominators <br> Target <br> - Explain relationships between unit fractions | Proximal Precursor <br> - Recognize numerator <br> - Recognize fraction <br> - Recognize denominator <br> - Explain unit fraction <br> Distal Precursor <br> - Partition any shape into equal parts <br> - Model equal part | Initial Precursor <br> - Recognize wholeness <br> - Recognize a unit <br> - Recognize parts of a given whole or a unit |

## Instructional Ideas

M.EE.6.NS. 1 - Compare the relationships between two unit fractions.

Fractions can mean different things and be modeled in different ways:

- Part of a set
- Part of a region
- As a measure

The big idea is a fractional part is equal to, less than, or greater than one whole.

- Introduce the activity by asking essential questions about fractions.
- Display a circle or other shape with one line cutting it in half and ask, "How many parts in this shape cut into?" Discuss students' responses.
- Introduce and discuss the numerator and denominator and what each one represents.
- Tell students it is their job to recognize fractions.
- Identify that a unit fraction is one part of a whole.
- Indicate that the more parts a whole is divided into, the smaller the parts will be.
- Use partitioning and iterations to represent the unit fractions.
- Compare two unit fractions.
- Use appropriate manipulatives to establish understanding of concepts.
- Included worksheets are examples of what to look for when finding additional materials that best fits your students needs.


## Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- https://www.msnowakhomeroom.com/2a-fraction-unit.html
Clues Guide 1
Fractions

FRACTOON PRACTICE




Draw a line between the matching fractions.

educotion.com Copyright 0 2012-2013 by Education.com

$\begin{gathered}\text { A fraction has a numerator and a denominator. } \\ \text { The numerator is the top number above the bar. } \\ \text { The denominator is the bottom number below the bar. }\end{gathered}$
numerator
denominator $\rightarrow$ The number that shows the parts being counted.

,



18 | Page


Half of the letters go to the Jones family. Color them RED.
How many letters are left?
$2 / 5$ of the remaining letters go the Smith family. Color them BLUE. How many letters are left?
$1 / 3$ of the remaining letters go the Davis family. Color them GREEN.



Fraction Strips

| 0$\frac{0}{3}$$\frac{1}{3}$ | $-\mid N$ | $-\mid m$ | $-\mid \sigma$ | -10 | -10 | $-1 \infty$ | $-1 \text { 으 }$ | -\|N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $-10$ | -\|N |
|  |  |  |  |  | $-10$ |  | -10 | $-1 \times$ |
|  |  |  |  |  |  |  |  | $-1 \infty$ | -1은 | $-1 \times$ |
|  |  | $-1 m$ | $-\mid \sigma$ |  |  | - 1 으 | -\|N |  |
|  |  |  |  | -10 |  | $-1 \infty$ | - 1 은 | -\|N |
|  | $-\mid N$ |  |  |  | -10 | $-1 \infty$ | - 1 은 | -\|N |
|  |  |  | -\| |  |  |  |  | -\|N |
|  |  | -\|m |  | -10 |  | $-1 \infty$ |  |  |
|  |  |  | $-15$ |  | -10 |  | - | $-1 \times$ |
|  |  |  |  |  |  | $-\infty$ | -1으 | -\|N |
|  |  |  |  |  | -- | $-1 \infty$ | -\|은 | -\|N |

24 | Page



## August Math Pacing Guide $7^{\text {th }}$ Grade

1. Number System (NS)

* M.EE.7.NS. 1 - Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.


## Learning Goal:

- Level 2-3 - I will add fractions with like denominators (halves, thirds, fourths, and tenths) to solve a math problem.
- Level 1-I will count fractional objects.


## Essential Questions:

- How can I represent these fractions?
- What is the relationship between the two fractions?
- What is the sum of two fractions?
- Which part of the fractions do I add?


## Vocabulary:

- numerator - the top number in a fraction, which shows the number of parts of the whole taken.
- denominator - the bottom number in a fraction, which shows the number of parts the whole has been divided into.
- equal - alike in size, value or amount to something else.
- fraction - a representation of a division of a number; a part of a whole.
- half - either of two equal parts of something.
- quarter - one of four equal parts into which something is divided.
- whole number - a positive integer or zero. 1, 15, 30 and 894 are examples.

Mini-Map for M.EE.7.NS. 1
Subject: Mathematics
The Number System (NS)
Grade: 7

## Learning Outcome

| DLM Essential Element | Grade-Level Standard |
| :--- | :--- |
| M.EE.7.NS. 1 Add fractions with like denominators (halves, <br> thirds, fourths, and tenths) with sums less than or equal to one. | M.7.NS. 1 Apply and extend previous understandings of addition <br> and subtraction to add and subtract rational numbers; <br> represent addition and subtraction on a horizontal or vertical <br> number line diagram. |

## Linkage Level Descriptions

| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :---: | :---: | :---: | :---: |
| Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of a subset by recognizing a subset as a set or group of objects within a larger set that share an attribute. | Recognize each object as the part of a whole or unit when shown a whole or unit containing a group of objects. | Communicate understanding that when fractional parts are added, it produces a larger portion of the whole, and when fractional parts are separated, it results in a smaller portion of the whole. Decompose fractions into sums of unit fractions with the same denominator (e.g., $3 / 7=1 / 7+1 / 7+$ 1/7). | Add two fractions with common denominators (e.g., $2 / 5+1 / 5=3 / 5$ ). | Add or subtract two fractions where one fraction has a denominator of 10 and one has a denominator of 100 (e.g., $5 / 10+$ $1 / 100=50 / 100+1 / 100$ $=51 / 100)$. |

## Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?
Adding fractions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9 ).

How is the Distal Precursor related to the Target?
As students begin to understand labeling, counting small sets, and recognizing wholes and parts of objects and sets, use a variety of tools (e.g., ten-frames, egg cartons, a collection of items in a category [clothes: shoes, socks, pants], your hands) to label and count the sets, and label and count the subsets.
M.EE.7.Ns. 1 Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.


| Map Key |  |
| :--- | :--- |
| IP | Initial Precursor |
| DP | Distal Precursor |
| PP | Proximal Precursor |
| T | Target |
| S | Successor |
| UN | Untested |
| Boxes indicate tested |  |
| nodes |  |

## Rubric of Student Success

| Level 3 Students will... <br> Successor and Target Students will... | Level 2 Students will... <br> Proximal Precursor and Distal Precursor Students will... | Level 1 Students will... <br> Initial Precursor Students will... |
| :---: | :---: | :---: |
| Level 3 <br> Use objects or a model to add two fractional units (e.g., $1 / 4$ cup $+1 / 4$ cup is the same is $1 / 2$ cup). | Level 2 <br> Model addition of two fractional units. | Level 1 <br> Match fractional parts of an object to model the solution to an addition problem through an active participation response. |
| Successor <br> - Add fractions with denominators of 10 and 100 <br> Target <br> - Add fractions with common denominators | Proximal Precursor <br> - Decompose a fraction into a sum of unit fractions with the same denominator <br> - Explain the concept of addition and subtraction of subtractions <br> Distal Precursor <br> - Recognize parts of a given whole or a unit | Initial Precursor <br> - Recognize separateness <br> - Recognize subset |

## Instructional Ideas

M.EE.7.NS. 1 - Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.

Numbers can be represented, displayed, converted, and compared.
The big idea is that concepts and properties of addition are the same whether using whole numbers or fractions.

- Introduce the activity by asking essential questions about fractions.
- Display a circle or other shape with two lines cutting it into 4 equal parts and ask, "How many parts is this shape cut into?" Discuss students' responses.
- Review and discuss the numerator and denominator and what each one represents.
- Discuss fraction parts and say, "If two fractions have the same denominator, they are parts of a whole that has been divided into the same number of parts. For example, $1 / 4$ is one of the pieces and $3 / 4$ is 3 of the same size pieces. We can subtract to get a difference of $2 / 4$ or 2 of the same size pieces.
- Tell students it is their job to recognize, count, and subtract fractions.
- Remind students that when they see a minus sign, they subtract the two numerators and keep the denominator the same.
- Use appropriate manipulatives to establish understanding of concepts.
- Students may use a calculator as needed and does not count against their understanding of the standard.
- Included worksheets are examples of what to look for when finding additional materials that best fits your students needs.


## Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- https://www.msnowakhomeroom.com/2a-fraction-unit.html
- https://www.tutoringhour.com/lessons/adding-like-fractions

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

Add the fractions.
To add fractions that have the same denomina
add the numerators. The denominator stays the



## Adding Fractions with the same denominator

Write the sum of each fraction below. Remember: when adding
fractions with the same denominator, simply add the numerators
and keep the denominator the same.

$n \mid n$
$\bullet \mid m$
F|a
윾


36 | Page

Adding Fractions (A)



## 2. Ratio and Proportions (RP)

* M.EE.7.RP.1-3 - Use a ratio to model or describe a relationship.


## Learning Goal:

- Level 2-3 - I will model and write a ratio to describe a relationship.
- Level 1-I will match objects that represent a relationship.

Essential Questions:

- What does this ratio tell me?
- How can I model this relationship?
- How do you write a ratio that describes part-to-part or part-to-whole.


## Vocabulary:

- Ratio - a way to show a relationship or compare two numbers of the same kind.
- Part-to-part - a ratio that compares a selected number of parts to a number of other parts in a whole.
- Part-to-whole - a ratio that compares a selected number of parts to the total number of parts in a whole.
- To - what is said when we state $5: 8$ as 5 "to" 8 .
- Out of - what is said when we state $5 / 8$ as a fraction to mean that 5 "out of" 8 .
- Comparison - relations among two numbers or quantities.

Mini-Map for M.EE.7.RP.1-3<br>Subject: Mathematics<br>Ratios and Proportional Relationships (RP)<br>Grade: 7

## Learning Outcome

| DLM Essential Element | Grade-Level Standard |
| :--- | :--- |
| M.EE.7.RP.1-3 Use a ratio to model or describe a relationship. | M.7.RP.1 Compute unit rates associated with ratios of fractions, <br> including ratios of lengths, areas, and other quantities |
|  | measured in like or different units. |
|  | M.7.RP.2 Recognize and represent proportional relationships |
|  | between quantities. |
|  | M.7.RP.3 Use proportional relationships to solve multistep ratio |
|  | and percent problems. |

## Linkage Level Descriptions

| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :---: | :---: | :---: | :---: |
| Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of set by recognizing a group of objects sharing an attribute. Communicate understanding of a subset by recognizing a subset as a set or group of objects within a larger set that share an attribute. | Divide familiar shapes, such as circles, squares, and/or rectangles, into two or more equal parts. Demonstrate understanding of a unit fraction (e.g., 1/4) as the quantity formed by one part when a whole is partitioned into $n$ (e.g., 4) equal parts. <br> Recognize a fraction as a number expressed as a quotient of two integers in the form | Communicate understanding that a ratio (e.g., 5:1) represents the relationship between two quantities (i.e., 5 of object $a$ for every 1 object $b$ ). When shown two groups of objects, one group with one object and another group with multiple objects (e.g., 4), recognize that there are four times as many objects in the second | When shown two groups of multiple objects (e.g., one group with two objects and another group with three objects), recognize that for every two objects in the first group there are three objects in the second group. When shown two groups of multiple objects, represent a many-to-many ratio of the parts as 2:3. | Communicate understanding that rates (i.e., $a / b$ ) can be expressed as ratios (i.e., $a: b)$. For example, instructions for a craft that uses $2 / 3$ piece of paper for each drawing can be expressed in the ratio of pieces of paper to number of drawings as 2:3. |


| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :--- | :--- | :--- | :--- | :--- |
|  | $a / b$, with $b$ not equal to <br> zero. | group as in the first <br> group. |  |  |

## Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

## How is the Initial Precursor related to the Target?

In order to understand ratios, students need to gain experience with creating sets. Educators can provide students with opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets. Then, separate the objects again based on another characteristic.

How is the Distal Precursor related to the Target?
As students become more adept at tracking discrete objects, they will begin working on one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group a pencil; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students understanding of one-to-one distribution develops, provide students many opportunities to recognize equivalence in sets with same items and then sets with differing items. As students work on all these skills and concepts, continue to draw their attention to parts and wholes.
M.EE.7.RP.1-3 Use a ratio to model or describe a relationship.


| Map Key |  |
| :--- | :--- |
| IP | Initial Precursor |
| DP | Distal Precursor |
| PP | Proximal Precursor |
| T | Target |
| S | Successor |
| UN | Untested |
| Boxes indicate tested |  |
| nodes |  |

## Rubric of Student Success

M.EE.7.RP.1-3 - Use a ratio to model or describe a relationship.

| Level 3 Students will... | Level 2 Students will... | Level 1 Students will... |
| :--- | :--- | :--- |
| Successor and Target Students will... | Proximal Precursor and Distal Precursor <br> Students will... | Initial Precursor Students will... |

## Instructional Ideas

M.EE.7.RP.1-3 - Use a ratio to model or describe a relationship.

Ratios show a comparison and can be used for mathematical reasoning.
The big idea is that a ratio is used to describe a relationship to part-part or part-whole (total).

- Introduce by asking the essential questions.
- Ask how many wheels does every bicycle have - 1 or 2? Discuss students' responses.
- Discuss that a bicycle and the number of wheels it has represents a part-to-part ratio. For every 1 bicycle, there are 2 wheels. This is a ratio of 1 bicycle to 2 wheels. A ratio compares two numbers and describe a pattern. If there are two bicycles, then there are 4 wheels. Each time another bicycle gets added, 2 more wheels are added.
- Explain part-to-whole (total) ratio. A part-to-whole (total) ratio compares part of the total to the overall total. The part-towhole (total) ratio of red markers to total markers is 1 to 8.
- Students will be modeling, writing, and matching ratios to describe a real-life relationship.
- Use manipulatives as needed.
- Provide students with their own ratio anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your students needs.


## Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- https://www.msnowakhomeroom.com/1a-ratios.html
Clues Guide 14
Ratios: Part-to-P

Clues Guide 15
Ratios: Part-to-Total

| $1: 3$ | Ratios: Part-to-Total |
| :--- | :--- |
| A ratio compares two numbers and shows how they are related. |  |
| A part-to-total ratio shows how one part of the total compares to |  |
| the total. |  |
| 1 blue ball for every 3 total balls. |  |
| The blue ball is one part of the total balls. |  |
| The ratio is 1 blue ball to 3 total balls. |  |
| It is a 1 to 3 ratio. |  |
| A ratio describes a pattern. |  |
| We draw 1 blue ball for |  |
| every 3 total balls we draw. |  |
| we draw 6 total balls. |  |



Ratios
There are 3 blue squares to 1 yellow square

| ᄃ $07 \varepsilon$ |  |
| :---: | :---: |
| $\tau: \varepsilon$ | :sənןе^ әчд әде.ıеdəs о子 |

[^3]
## "Part-to-Part" and "Part-to-Whole" Ratios

The examples so far have been "part-to-part" (comparing one part to another part).
But a ratio can also show a part compared to the whole lot.
Example: There are 5 pups, 2 are boys, and 3 are girls
The ratio of girls to all pups is $3: 5$ or $\mathbf{3} / \mathbf{5}$


51 | P a g e


[^4]52 | Page


$\mathbf{5 3}$ \| Page



54 | P a g e



55 \| Page



56 | P a g e



57 | Page



58 | P a g e


[^5]59 \| Page

## August Math Pacing Guide

$8^{\text {th }}$ Grade
M.EE.8.NS.1 - Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.

## Learning Goal:

- Level 2-3-I will subtract fractions with like denominators (halves, thirds, fourths, and tenths) to solve a math problem.
- Level $1-1$ will subtract fractional objects.


## Essential Questions:

- How can I represent these fractions?
- What is the relationship between the two fractions?
- What is the difference of two fractions?
- Which part of the fractions do I subtract?
- Why do I not subtract the denominators?
- How can I express a fraction as a decimal?
- Which hundredths is larger/smaller (from a real-world example)?


## Vocabulary:

- numerator - the top number in a fraction, which shows the number of parts of the whole taken.
- denominator - the bottom number in a fraction, which shows the number of parts the whole has been divided into.
- equal - alike in size, value or amount to something else.
- fraction - a representation of a division of a number; a part of a whole.
- half - either of two equal parts of something.
- quarter - one of four equal parts into which something is divided.
- whole number - a positive integer or zero. 1, 15, 30 and 894 are examples.


## Learning Outcome

| DLM Essential Element | Grade-Level Standard |
| :--- | :--- |
| M.EE.8.NS.1 Subtract fractions with like denominators (halves, <br> thirds, fourths, and tenths) with minuends less than or equal to <br> one. | M.8.NS.1 Know that numbers that are not rational are called <br> irrational. Understand informally that every number has a <br> decimal expansion; for rational numbers show that the decimal <br> expansion repeats eventually, and convert a decimal expansion <br> which repeats eventually into a rational number. |

## Linkage Level Descriptions

| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :---: | :---: | :---: | :---: |
| Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of a subset by recognizing a subset as a set or group of objects within a larger set that share an attribute. | Recognize each object as the part of a whole or unit when shown a whole or unit containing a group of objects. | Communicate understanding that when fractional parts are added, it produces a larger portion of the whole, and that when fractional parts are separated, it results in a smaller portion of the whole. Decompose fractions into sums of unit fractions with the same denominator (e.g., $3 / 7=1 / 7+1 / 7+$ 1/7). | Subtract two fractions with common denominators (e.g., 4/5 $-1 / 5=3 / 5$ ). | Add or subtract two fractions where one fraction has a denominator of 10 and one has a denominator of 100 (e.g., $5 / 10+$ $1 / 100=50 / 100+1 / 100$ $=51 / 100)$. |

## Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

## How is the Initial Precursor related to the Target?

Subtracting fractions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a set of 9 is part of 10).

## How is the Distal Precursor related to the Target?

As students work toward greater understanding of sets, educators will provide students with many set models (see below) of fractions using the same unit fraction, either halves, thirds, fourths, or tenths. Students will work on identifying the whole.


Unit Fraction 1/4


Unit Fraction 1/10

M.EE.8.NS. 1 Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.


## Rubric of Student Success

M.EE.8.NS. 1 - Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.

| Level 3 Students will... | Level 2 Students will... | Level 1 Students will... |
| :--- | :--- | :--- |
| Successor and Target Students will... |  |  | | Proximal Precursor and Distal Precursor |
| :--- |
| Students will... |$\quad$| Initial Precursor Students will... |
| :--- |

## Instructional Ideas

M.EE.8.NS. 1 - Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.

Division of whole into parts can be represented by fractions and decimals.

The big idea is that the concepts of subtraction are the same whether using whole numbers, fractions, or decimals.

- Introduce by asking the essential questions.
- Ask how many wheels does every bicycle have - 1 or 2? Discuss students' responses.
- Discuss that a bicycle and the number of wheels it has represents a part-to-part ratio. For every 1 bicycle, there are 2 wheels. This is a ratio of 1 bicycle to 2 wheels. A ratio compares two numbers and describe a pattern. If there are two bicycles, then there are 4 wheels. Each time another bicycle gets added, 2 more wheels are added.
- Explain part-to-whole (total) ratio. A part-to-whole (total) ratio compares part of the total to the overall total. The part-towhole (total) ratio of red markers to total markers is 1 to 8.
- Students will be modeling, writing, and matching ratios to describe a real-life relationship.
- Use manipulatives as needed.
- Provide students with their own ratio anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your students needs.


## Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- https://www.msnowakhomeroom.com/2a-fraction-unit.html




68 | P a g e

II
II $\begin{array}{cccc}-\mid \infty & m \mid \sigma & \infty \mid \sigma & \sim \mid+~ \\ 1 & 1 & 1 & 1\end{array}$

$$
\bullet \mid \infty
$$

$\infty \mid a$
잉
~1

이N
の읻

| ナ\|0n | 1 |
| :---: | :---: |
| 1 | O\|O |
| $\infty$ | N |


| $\infty$ | $n$ |
| :--- | :--- |
|  |  |
|  |  |

1
$\stackrel{N}{\mathrm{O}} \stackrel{\mathrm{N}}{\mathrm{N}}$





## September Math Pacing Guide <br> $6^{\text {th }}$ Grade

1. M.EE.6.NS.1 - Compare the relationships between two unit fractions.

- Go back to pages 7-26 to see content for this standard.

2. M.EE.6.NS.5-8 - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values.

## Learning Goal:

- Level 2-3 - I will add positive and negative numbers to solve a math problem and graph the answer.
- Level 1-I will count objects with negative numbers.

Essential Questions:

- Where can I find this number on a number line?
- Does this number have a positive or negative value?
- What are some examples I can use to show negative and positive numbers?
- If I start with a positive number and then add a negative number, what direction on the number line will I move?
- How far is this number from zero?


## Vocabulary:

- Positive numbers - numbers greater than zero; the numbers to the right of zero on the number line.
- Negative numbers - numbers that are less than zero; the numbers to the left of zero on the number line.
- Whole number - a positive integer or zero. 1, 15, 30 and 894 are examples.
- Number line - visual representation of numbers along a horizontal line.


## Subject: Mathematics <br> The Number System (NS) <br> Grade: 6

## Learning Outcome

| DLM Essential Element | Grade-Level Standard |
| :--- | :--- |
| M.EE.6.NS.5-8 Understand that positive and negative numbers  <br> are used together to describe quantities having opposite  <br> directions or values (e.g., temperature above/below zero). M.6.NS.5 Understand that positive and negative numbers are <br> used together to describe quantities having opposite directions  <br> or values (e.g., temperature above/below zero, elevation  <br> above/below sea level, credits/debits, positive/negative electric  <br> charge); use positive and negative numbers to represent  <br> quantities in real-world contexts, explaining the meaning of 0 in  <br> each situation.  |  |
|  | M.6.NS. 6 Understand a rational number as a point on the <br> number line. Extend number line diagrams and coordinate axes <br> familiar from previous grades to represent points on the line |
|  | and in the plane with negative number coordinates. <br> M.6.NS.7 Understand ordering and absolute value of rational <br> numbers. |
|  | M.6.NS.8 Solve real-world and mathematical problems by <br> graphing points in all four quadrants of the coordinate plane. <br> Include use of coordinates and absolute value to find distances <br> between points with the same first coordinate or the same <br> second coordinate. |

## Linkage Level Descriptions

| Initial Precursor | Distal Precursor | Proximal Precursor | Target | Successor |
| :---: | :---: | :---: | :---: | :---: |
| Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of set by recognizing a group of objects sharing an attribute. | Count all objects in a set to communicate the total number of objects in that set. Identify sets having the same number of objects. Identify a set containing a different number of objects than the other two sets. Recognize a set containing more or fewer objects than the other set. | Communicate understanding that opposite numbers are equidistant from zero but in opposite directions, or that when two opposite numbers are added together they yield a sum of zero (e.g., $3+(-3)=0$, thus 3 and -3 are opposite numbers). | Demonstrate use of positive and negative numbers in real-world contexts such as temperature, elevation, credits, and debits (e.g., representing a debit of 500 dollars as -500 dollars). | Communicate understanding of inequalities in realworld contexts (e.g., -3 degrees > -7 degrees means that -3 degrees is warmer than -7 degrees). Communicate the meaning of zero in relation to positive and negative numbers in real-world contexts (e.g., recognize that no elevation, or 0 feet, means "at sea level"; positive elevation, for example, 200 feet, means "above sea level"; and negative elevation, for example, 200 feet, means "below sea level"). |

## Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?
In order to use positive and negative numbers, students need to gain experience with creating sets. Educators can help students learn this by providing students with opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets. Then encourage them to separate them again based on another characteristic.

How is the Distal Precursor related to the Target?
As students begin to develop the understanding of sets and numbers, educators will highlight the differences between sets on the basis of overall area or discrete number using the words same, different, fewer and more. Provide students with multiple opportunities to count and compare a wide variety of sets with an increasing number of items, label the set (e.g., eight ball, 12 bears, 15 blocks), and move items in and out of the sets, labeling and counting them again (e.g., "You just said this set has 11 cubes; if I take two cubes, how many will you have?").
M.EE.6.NS.5-8 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero).


## Rubric of Student Success

M.EE.6.NS.5-8 - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values.

| Level 3 Students will... <br> Successor and Target Students will... | Level 2 Students will... <br> Proximal Precursor and Distal Precursor Students will... | Level 1 Students will... <br> Initial Precursor Students will... |
| :---: | :---: | :---: |
| Level 3 <br> Identify and label positive and negative numbers in the context of a real-world scenario. <br> Use appropriate operations to add and subtract positive and negative numbers in a real-world scenario (using a number line). <br> Independently identify the opposite of a number and the number equals 0 (e.g., -2 and $2,-2+2=0$ ). | Level 2 <br> Select positive and negative numbers in a real-world scenario. <br> Add or subtract positive and negative numbers in a real-world scenario (e.g., using a number line). <br> Select the opposite of a number (e.g., -2 and $2,-2+2=0$ ). | Level 1 <br> Participate in labeling positive and negative numbers using an active response mode. <br> Count a set of objects in an addition or subtraction real-world problem involving positive and negative numbers through an active participation response (e.g., voice output device, eye gaze choice board.). <br> Participate in labeling the opposite of a number (e.g., -2 and $2,-2+2=0$ ). |
| Successor <br> - Relate the meaning of 0 to positive and negative numbers in realworld context | Proximal Precursor <br> - Recognize opposite numbers | Initial Precursor <br> - Recognize separateness <br> - Recognize set |

- Explain inequalities from realworld contexts


## Target

- Use positive and negative numbers in real-world contexts


## Distal Precursor

- Count all numbers in a set or subset
- Recognize same number of
- Recognize differ number of
- Recognize few number of
- Recognize more number of


## Instructional Ideas

M.EE.6.NS.5-8 - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values.

Both positive and negative numbers represent a distance from zero on the number line.
The big idea is that positive numbers are greater than zero. Negative numbers are less than zero and have a negative sign (-) in front of them. A negative number is the opposite of a positive number of the same size.

- Introduce by asking the essential questions.
- Display a minus sign and ask, "What does this sign mean besides subtract - negative or positive?" Discuss students' responses.
- Introduce and discuss the symbols used to indicate a negative and positive number, including the minus sign and the plus sign.
- Discuss the uses of a negative number in temperature, seal level, and when owing money.
- Tell students it is their job to count, add negative and positive numbers, and graph the numbers on a number line.
- Remind students that when they see a minus sign, or negative sign, it means that the number is less than zero.
- Model the steps of graphing a positive and negative number on a number line.
- Model how to write positive and negative numbers with the appropriate sign in front of it.
- Model the steps of solving the problem using the number line.
- Solve the problem by counting in the targeted direction.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Provide students with their own number line and anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your students needs.


## Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- https://www.msnowakhomeroom.com/2e-positivenegative-numbers.html
Clues Guide 4
Positive and Ne
Positive and Negative Numbers

|  | Positive and Negative Numbers |
| :---: | :---: |
| Zero is the middle of all numbers. <br> Zero has no value. All negative numbers are to the left of zero. All positive numbers are to the right of zero. |  |
|  |  |
| Numbers that are equal distance from zero are opposites. |  |
| For example, -4 and +4 are opposites because they are both 4 units from zero. |  |
| Adding opposite numbers will always equal zero. For example, $+4+-4=0$ or $-4++4=0$ |  |
|  | nd Negative numbers describe opposite relationships: <br> Positive is opposite of Negative <br> Up is opposite of Down <br> Above is opposite of Below <br> much you have is opposite of How much you owe |




Number Line
Use the number line to find the answer to each problem. Look at the first number in the problem. Put your pencil on that number on the number line. Look at the second number in the problem. Move your pencil to the right that many numbers on the number line to find the answer.

©




86 | Page
:300s

## sıว马วəұu! jo әu!soddo



| Opposite of 3 | $-\mathbf{3}$ |
| :--- | :--- |
| Opposite of -4 |  |
| Opposite of -9 |  |
| Opposite of 6 |  |
| Opposite of 4 |  |
| Opposite of -1 |  |
| Opposite of 9 |  |
| Opposite of -2 |  |
| Opposite of 1 |  |
| Opposite of -8 |  |
| Opposite of -3 |  |
| Opposite of 2 |  |
| Opposite of -5 |  |
| Opposite of 7 |  |
| Opposite of -6 | Opposite of -3 |



## Temperature:

The table displays the low temperatures that occurred in North Dakota during a week

| Day: | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low <br> Temperature <br> in ${ }^{\circ} \mathrm{F}$ | $8^{\circ}$ | $-2^{\circ}$ | $-4^{\circ}$ | $-6^{\circ}$ | $0^{\circ}$ | $-3^{\circ}$ | $-8^{\circ}$ |

I. Mark and label the temperatures from that week.

Put the temperatures in order from coldest to warmest:

## Number Line Practice:

Directions: Fill in the missing numbers on each number line.

$\bigcirc$
in
+


91 | Page

92 \| age

## September Math Pacing Guide

$7^{\text {th }}$ Grade
M.EE.7.NS. 1 - Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to one.

- Go back to pages 7-26 to see content for this standard.
M.EE.7.RP.1-3 - Use a ratio to model or describe a relationship.
- Go back to pages $39-59$ to see content for this standard.


## September Math Pacing Guide

$8^{\text {th }}$ Grade
M.EE.8.NS. 1 - Subtract fractions with like denominators (halves, thirds, fourths, and tenths) with minuends less than or equal to one.

- Go back to pages 60-71 to see content for this standard.


## Credits

Websites Used for Worksheets and Lesson Ideas:

- https://www.education.com
- https://www.twinkl.com
- https://www.superteacherworksheets.com
- https://www.easyteacherworksheets.com
- https://www.mathworksheets4kids.com
- https://www.math-salamanders.com
- https://www.math-drills.com


## Resources Used to Help Create the Pacing Guide:

DLM Essential Elements Unpacking

- https://www.dlmpd.com/dlm-essential-elements-unpacking

Instructional Resources for YE Model States

- https://dynamiclearningmaps.org/instructional-resources-ye/mathematics

Dynamic Learning Maps

- https://dynamiclearningmaps.org

Unique Learning System

- https://www.n2y.com/unique-learning-system


[^0]:    ${ }^{1}$ https://dynamiclearningmaps.org/essential-elements/math

[^1]:    ${ }^{2}$ https://dynamiclearningmaps.org/essential-elements/math

[^2]:    ${ }^{3}$ https://dynamiclearningmaps.org/essential-elements/math

[^3]:    A ratio can be scaled up:
    

[^4]:    

[^5]:    

