Essential Elements Math Pacing Guide

February

Background

The Essential Elements Math Pacing Guide was inspired by realizing that there is a small amount of information found on the internet to help support educators who teach those who follow an alternate curriculum for our amazing 1% of the student population in education. I wanted to create something that could help serve as a guide, a support, an understanding of how to hold our students to high academic achievement, just like their regular education peers.

Regular education materials are abundant and come with pacing guides with how to implement the prescribed curriculum that the school decided to buy into. Within those curriculums, a good majority of publishers incorporated how to differentiate Instruction for struggling learners, for English Language Learners and/or English as a Second Language learners. However, there does not seem to be a supplementary curriculum that aligns to how to modify instruction and materials for those who follow the alternate curriculum so the 1% of students with disabilities aligned to the alternate curriculum could also learn a modified version of the same materials as their non-disabled peers in an inclusive setting.

Your partner in education, Jeanette Nowak

Updated July 2022

Table of Contents

February Outline 4
How to Access Math Instruction and Materials from Unique 5
Understanding Differentiated Levels In Unique 6
Measuring Success by the Essential Elements Standards 6
February Math Pacing Guide $6^{\text {th }}$ Grade 7-55
February Math Pacing Guide $7^{\text {th }}$ Grade 56-88
Credits 89

February Outline

Standards covered during February:

- M.EE.6.G.1 - Solve real-world and mathematical problems about area using unit squares.
- M.EE.6.NS.2 - Apply the concept of fair share and equal shares to divide.
- M.EE.7.G.4 - Determine the perimeter of a rectangle by adding the measures of the sides.
- M.EE.7.NS.2.b - Solve division problems with divisors up to five and also with a divisor of 10 without remainders.
- M.EE.8.G.5 - Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.
- M.EE.8.G.9 - Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms).

According to the Dynamic Learning Maps (DLM) website, these are the commonly tested standards that are used for the DLM assessment.

1. https://www.n2y.com/unique-learning-system/
2. Log in using the provided username and password you received
3. Click on Unique Learning System
4. Click on the three lines \longrightarrow Unle learning system
5. Select Monthly Lessons/Unit Lessons共
6. Select Math
a. When selecting materials, select PDF icon to save and print

Understanding Differentiated Levels in Unique

- Level 3 Learners - can read text and can participate more independently in the lesson (Independent)
- Level 2 Learners- require pictorial support and require mild to moderate support to participate in the lesson (Supported)
- Level 1 Learners- require extensive supports to participate in the lesson (Participatory).

Measuring Success by the Essential Elements Standards

Students who take DLM assessments are instructed and assessed on Essential Elements. Essential Elements are grade-specific expectations about what students with the most significant cognitive disabilities should know and be able to do. The Essential Elements relate to college and career readiness standards for students in the general population.

February Math Pacing Guide
 $6^{\text {th }}$ Grade

M.EE.6.G.1 - Solve real-world and mathematical problems about area using unit squares.

Learning Goal:

- Level 2-3 - Use unit squares to find the area of a polygon in a real-world scenario (no support level 3, with support level 2).
- Level 1 - Count unit squares to find the area of a polygon using an active participation response (e.g., voice output device, eye gaze choice board).

Essential Questions:

- What is area?
- How can I organize the information to solve for area?

Vocabulary:

- Unit - A general term meaning 1.
- Perimeter - The distance around a two-dimensional shape.
- Area - The size of a surface.
- Length - Distance. How far from end to end or from one point to another.
- Width - The distance from side to side.

Mini-Map for M.EE.6.G. 1

Subject: Mathematics
Geometry (G)
Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.G.1 Solve real-world and mathematical problems about	M.6.G.1 Find the area of right triangles, other triangles, special area using unit squares.
quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these	
techniques in the context of solving real-world and	
mathematical problems.	

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate generic understanding of "some" as a certain amount or a number of people or things.	Communicate understanding that a unit square is a square with edge lengths of 1 unit and area of 1 square unit. Communicate understanding of area as the measure of space contained within the outline or boundary of a two-dimensional object or figure.	Calculate the area of a square or rectangle by filling a figure with unit squares or tiles and counting the total number of unit squares or tiles. Calculate the area of a square or rectangle by counting the number of square units drawn to cover the area.	Find the unknown quantity in the word problem by determining the area of a rectangle.	Communicate understanding that length and width measures of a rectangle can be used to find the number of unit tiles needed to fill the rectangle and that the number of tiles equals the product of the length and width. Calculate area of a rectangle using the area formula (area $=$ length x width).

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to solve problems using unit squares, students at this level start with learning to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets with 1-4 items. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it, and then counts the items (e.g., two balls, 1,2) and encourages students to use numerals to label and count the separate sets. Begin working on the quantifier "some" as students are developing an understanding of the quantities 1-4, using the students' communication system to demonstrate the use of the word "some".

How is the Distal Precursor related to the Target?
As students continue to develop their understandings of number and sets, they can also work on covering small rectangles with unit squares and counting each one as it is placed. Core vocabulary can be used to demonstrate the language associated with these concepts (e.g., all, all on, put on, it here, unit squares are to be placed on a rectangle side by side if one is on the diagonal the word turn can be used, finished).
M.EE.6.G. 1 Solve real-world and mathematical problems about area using unit squares.

Rubric of Student Success

M.EE.6.G.1 - Solve real-world and mathematical problems about area using unit squares.

Level 3 Students will... Level 3 - Use unit squares to find the area of a polygon in a real-world scenario.	Level 2 Students will... Level 2 - Use unit squares to find the area of a polygon in a real-world scenario, with support.	Level 1 Students will... Level 1 - Count unit squares to find the area of a polygon using an active participation (e.g., voice output device, eye gaze choice board.)
Successor and Target Students will...	Proximal Precursor and Distal Precursor Students will...	Initial Precursor Students will...
Successor - Calculate area for rectangles with formula - Relate tiling and formula as methods for calculating area of a rectangle	Proximal Precursor - Calculate area by counting unit squares - Calculate area of a rectangle with tiling	Initial Precursor - Recognize some - Recognize separateness
Target - Solve word problems involving area of rectangles	Distal Precursor - Explain area - Explain unit square	

Instructional Ideas

M.EE.6.G.1 - Solve real-world and mathematical problems about area using unit squares.

Measurement involves a selected attribute of an object such as area.
The big idea is that the use of standard measurement units simplifies communication about the size of objects.

- Introduce by asking the essential questions.
- Determine the area of a polygon using unit squares in a real-world scenario by positioning rows and counting unit squares that do not overlap.
- Determine the area of a polygon (limited to rectangle, square, or triangle) using the formula for area in a real-world scenario.
- While modeling the scenarios, use tangible manipulatives for students to visualize concepts and practice with, such as stackable counting cubes or geoboards.
- Explain that the area is the measurement of the space inside a flat shape. Model how to find the area of the object on the page. Think aloud and model how to find the area of the object on the page. For example, say, "Area is how much space is inside a flat shape. I need to count the unit squares in this shape." Count the unit squares aloud and sate the total number of cubes as units squared.
- Explain that the area can be found by multiplying the length by the width of a rectangle or square. Model how to find the area of the object by completing the page and multiplying the length times the width. Think aloud and model how to find the area. For example, say, "Area is how much space is inside of a flat shape. I need to multiply the length times the width. The length is 6 units. The width is 4 units. So, $6 \times 4=24$. The area is 24 units squared.
- Model how a square or rectangle can be cut in half diagonally to form two triangles by putting the two triangles shapes over the square or rectangle and dividing by two. Model how to find the area of one triangle on the page using the equation: length x width divided by 2.
- Create a math word wall.
- Might have to make up your own worksheets but can use the ones provided as inspiration.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Provide students with their own anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

How many squares fill the donation sign?
 \because

[^0]15 \| Page

16 | Page

17 | Page

18|Page

Find the area of a triangle.
First, find the area of the recycling bin. Then, use the
triangles to divide the recycling bin. The area of each
triangle is the surface, or area, inside the recycling bin
divided by 2 .

11
$\frac{5}{8} \frac{0}{5}$
3

Find the area of a triangle.
First, find the area of the recycling bin. Then, use the
triangles to divide the recycling bin. The area of each
triangle is the surface, or area, inside the recycling bin
divided by 2 .

20 | Page
Find the area of a triangle.
First, find the area of the recycling bin. Then, use the
triangles to divide the recycling bin. The area of each
triangle is the surface, or area, inside the recycling bin
divided by 2 .

21 | P a g e

Find the area of each figure.

等
5
0
0
0
0

square units

square units
Counting Square Units
The area of a figure can be determined by counting its number of square units.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$

Count how many square units form each area.
i

$\underset{~}{\text { ® }}$

 ผ

Name:
Area of Squares and Rectangles Area, Perimeter, and Volume
Area of Triangles
caiculating Area or a triangte
Area $=1 / 2(\mathrm{bh})$, where $\mathrm{b}=$ base and n
$\mathrm{n}=$ height. (Height must form n
right angle with a base.)
Find the area of each triangle in units squared (yd. ${ }^{2}$, ft^{2}, m^{2}

Area is the number of square units in a closed shape. Area can be measured in miles, kilometers, feet, inches, or many other units.
Step 1: Count the number of squares in the red rectangle below. Write your answer here: ___

Step 2: Let's find an easier way to find the area of a shape. In the
rectangle, count the squares across the top \longleftrightarrow. This is called length.
Then count the number of squares from top to bottom \uparrow. This is called width. Write your numbers below. Length:

What number do you get when you multiply the number of squares in the length by the number of squares in the width? Write that number
sentence below and compare it to the number you got when you
The easy way to find the area of a rectangle is to multiply the number of squares in the length by the number of squares in the width. Write a number sentence for the area of each red rectangle below.

\square counted the squares.

Finding Area
Name:

27 | P a g e

29 | P a g e

Date:

Area is the measurement of the square units inside a shape.
Counting square units is one way to find the area of a shape. This is why we label the units as

$$
\begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\text { Count the number of square } \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\text { units inside this rectangle. } \\
\text { Area=___ square units }
\end{array}
$$

TRY IT! Janine is a lifeguard at the community pool. Every night she must cover the pool with a tarp that has the same area as the pool.
What is the length of the pool?
What is the width of the pool?

北education.com

In the problems below, 1 square unit $=1$ square foot

1. Malik built a new sandbox in his backyard. What is the area of the sandbox? Challenge If one bag of
sand will fill an
area of 8 square
feet, how many
bags will Malik
need to fill his
sandbox?

2. Taylor is moving into a new bedroom and she is not sure her bed
will fit. What is the area of her new bedroom?
3. Leah wants to earn money by mowing lawns. She starts mowing

4. Oren is painting a wall a bright shade of yellow. What is the area of

[Jeducation.com

Challenge
If Taylor's bed If Taylor's bed
takes up an area
of 9 square feet, of 9 square feet,
how many

E

[^1]
6. Hannah's soccer team is installing artificial turf on their new field, but they are not sure how
much turf to buy. What is the area of the soccer field?

Draw lines to divide the polygon into rectangles. Then figure the area of each rectangle. Add the areas together to get the total area.
What is the area of Farmer Green's land?
Show how you reached your answer.

February Math Pacing Guide $6^{\text {th }}$ Grade

M.EE.6.NS. 2 - Apply the concept of fair share and equal shares to divide.

Learning Goal:

- Level 2-3 - Students will represent real-world problems as equations.
- Level 1 - Students will combine and partition sets.

Essential Questions:

- How can I make equal groups from this one large group?
- How do I know this is a fair share?
- How can I solve this division problem using objects?
- How can I solve this division problem using a calculator?

Vocabulary:

- Fair share - Splitting into equal parts or groups.
- Division-To split into equal parts or groups.

Mini-Map for M.EE.6.NS. 2
 Subject: Mathematics
 The Number System (NS)
 Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.2 Apply the concept of fair share and equal shares to divide.	M.6.NS.2 Fluently divide multi-digit numbers using the standard algorithm.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of set by recognizing a group of objects sharing an attribute. Communicate understanding of a subset by recognizing a subset as a set or group of objects within a larger set that share an attribute.	Divide a set containing 10 or fewer objects into equal subsets (e.g., divide a set consisting of 10 counters into two subsets with 5 counters each).	Communicate understanding that repeated subtraction is subtracting equal groups from a number (e.g., 15-5-5-5). Represent repeated subtraction using equations (e.g., 15-5-5-5 = 0), and model repeated subtraction using concrete manipulatives.	Demonstrate understanding of division by splitting a set into an equal number of subsets and communicating the quotient as the number of equal subsets (e.g., a set consisting of 15 objects has three subsets, each containing 5 objects).	Divide a number within 12 by a divisor from 1 to 5 to determine the quotient, using manipulatives as needed.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to understand division, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students working at the Initial Precursor linkage level learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to communicate their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set, subsets, and separateness.

How is the Distal Precursor related to the Target?

As students' understanding of labeling and counting sets develops, they will begin working on adding and taking away items from a set. Educators provide opportunities for students to work on developing an understanding of partitioning by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters they can line up, then four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair) and taking equal shares away (subtracting) from each person, object, or space. Educators will provide opportunities for students to connect their understanding of subtraction (starting with the whole and taking away a part) to repeated subtraction. For example, if the educator has 12 balls, and each team gets 4 balls, how many teams will there be? By subtracting 4 from the whole repeatedly, we made 3 equal sets so there are 3 teams.

M.EE.6.NS. 2 Apply the concept of fair share and equal shares to divide.

Rubric of Student Success

M.EE.6.NS.2 - Apply the concept of fair share and equal shares to divide.

Level 3 Students will... Level 3	Level 2 Students will... Level 2	Level 1 Students will... Level 1
Successor and Target Students will...	Proximal Precursor and Distal Precursor Students will...	Initial Precursor Students will...
Successor - Divide by: 1, 2, 3, 4, 5, 10	Proximal Precursor	Initial Precursor - Recognize separateness
Target - Demonstrate the concept of division	with an equation - Explain repeated subtraction - Represent repeated subtraction with a model	- Recognize subset
	Distal Precursor - Partition sets - Partition sets into equal subsets	

nstructional Ideas

M.EE.6.NS.2 - Apply the concept of fair share and equal shares to divide

Problems can be solved using various operations.

The big idea is that some problems involving separating equal groups can be solved using division.

- Introduce by asking the essential questions.
- Use the values in a division equation to find the number of groups that can be made or the number of items in each group using the strategy of fair or equal shares.
- Use concrete objects to prove the answer.
- Use a calculator to prove the answer.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

$\begin{aligned} & \text { N } \\ & 0 \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$	¢		$\begin{array}{\|c\|} \hline \\ \hline \\ n \\ m \\ \cdots \\ \stackrel{n}{\sim} \\ \hline \end{array}$			$$		
을 $\frac{2}{c}$ $\frac{10}{\infty}$ $\frac{2}{2}$ $\frac{c}{9}$ $\frac{2}{2}$ $\frac{2}{2}$			$\begin{gathered} 0 \\ 11 \\ \sim \\ \cdots \\ \underset{\sim}{1} \end{gathered}$			$\begin{array}{r} \\| \\ \star \\ + \\ \cdots \\ \sim \\ \sim \\ \hline \end{array}$		

42 | Page

43 \| Page

Reading and Math for K-5

44 | Page

Reading and Math for K-5

45 \| Page

(1) $\begin{gathered}\stackrel{11}{\sim} \\ \stackrel{1}{*} \\ \stackrel{0}{0}\end{gathered}$
©
"
©
*
-
\because

1
1
1
\cdots
\cdots
(a) \quad m
1
11
m
\cdots
\cdots
(n)
$\|$
\forall
\forall
\bullet
\bullet

$\begin{array}{|cc|} & \\ & \\ & 11 \\ & 1 \\ & 1 \\ & 0\end{array}$
(1)

1
11
\cdots
\cdots

(6)

The repeated subtraction equation for $15 \div 3=5$ is $15-3-3-3-3-3=0$
Similarly, the division equation for $15-3-3-3-3-3=0$ is $15 \div 3=5$

47 | Page

 48 \| Page
1

[^2]| This activity compares two models of division - "sharing" division and
 "repeated subtraction" division. Students discover and explain why both
 models of division yield the same answer. Students decide which model of
 division a problem reflects, then model and solve the problem with blocks. |
| :--- |
| Objectives |
| Thinking Skills:Students explore two meanings for division by modeling
 different situations with blocks. They first examine a
 problem and decide which model or meaning of division is
 most appropriate and then use that model to solve the
 problem. |
| Mastery Skills:Students learn to model, solve, and write number
 sentences to represent division story problems. |

[^3]- Activity Sheets \#1 and \#2
Class Introduction (25 minutes)
Provide small paper plates to pairs of students. Suggest that students use them to help organize blocks as they are solving problems.
Problem 1:
Display a repeated subtraction problem, such as:
Emma has 24 stickers for her sticker book.
She puts 6 stickers on a page. How many
pages does she fill?
Have students work together to model the problem with blocks. Students will likely do the following:
Put six blocks on a plate at a time until they run out of blocks. "Six" "Six" "Six"
COEGEGG "Six"
- Count the number of plates they used. The answer is: 4 plates $/ 4$
pages of stickers.
While students are modeling the problem, ask questions such as:
What do your blocks represent?
What did you do first? Then what?
Why did you put 6 blocks together?
How many groups of 6 can you make, or how many "pages" can you
Have students record how they organized the blocks by drawing a picture.

	$\left(\begin{array}{l} \square \\ \square \\ \square \\ \square \end{array}\right.$
	$\left(\begin{array}{l} \square \\ \square \\ \square \\ \square \\ \square \end{array}\right.$
	$\left(\begin{array}{l} \square \\ \square \\ \square \\ \square \\ \square \end{array}\right.$
$\frac{-}{\frac{y}{U}}$	\square \square \square \square \square

Ask, How can we show what we did with numbers?

- Students may suggest using subtraction to show removing 6 at a time:
24-6-6-6-6 24
- Help students understand that what they have really done is separate
 sign.
- Introduce/review the meaning of the numbers and symbols in the division equation:
$24 \div 6=4$
Again, have students model the problem with blocks. This time, however, they will likely be "dealing out" mints, one to four blocks at a time to each six piles or paper plates.
Next, display a sharing problem, such as: Eddie has a box of 24 mints. He wants to distribute them evenly to 6 of his friends. How many should each of the 6 friends get?
Problem 2:

Deal out one to four blocks/mints at a time to each plate until there are no more blocks.

- Count the number of blocks/mints on each plate. The answer is: 4
mints for each friend.

Again, help children express what they did with numbers. They will notice
that, once again, the problem can be written as:

$24 \div 6=4$

Comparing Problem 1 and Problem 2:
Have students compare the pictures they drew for the 2 problems. Ask, How can it be that we solved two different problems and our pictures look very different, yet the number sentences and answers are the same? - Some students may be completely baffled; others may be convinced that it is coincidental.

- Challenge students to explain the similarities and differences between the problems.
Help students articulate the following:
The first problem specifies the group size (6) whereas the second
specifies the number of groups (6 again).

52 | Page

- To solve the first problem, students need to figure out how many groups they can make, but in the second, they need to know how many in each group.
- It may be helpful to relate each drawing to a multiplication sentence
 6 groups of 4 "look" different, they both have the same product. (See Pack-It \#316: "Let's Explore 6×4. .")
Explain to students that they will continue to explore the meaning of division by modeling and solving additional problems.
Activity (25 minutes)
Copy and distribute Activity Sheets \#1 and \#2 "Sharing Vs. Repeated
Subtraction" to pairs of students sitting side by side. Explain the following: - The student on the left reads and models the problem on the left side of the page, and the student on the right does the same for the problem on the right. Each student records his/her block arrangement.
Students take turns explaining how they solved their problem to their partners.
Both students agree on one division number sentence that represents both problems and write it in the space. They continue on the back.
As students are working, help them clarify whether they are finding the number of groups or the number in each group as they model their problems with blocks.
Challenge early finishers with a pair of problems using larger numbers.

After students have completed their work, collect papers and select several
to share and discuss.
Have the "authors" of each paper describe how they solved each
problem and invite classmates to respond.
Assessment
As students are working, observe and note:
Do they -
- Model the story problem situation with blocks?
- Answer the question correctly?
- Know how to write the division number sentence that relates to the
problem?
- Describe the meaning of the numbers and symbols in a division number
sentence?

55 | P a g e

February Math Pacing Guide $7^{\text {th }}$ Grade

M.EE.7.G. 4 - Determine the perimeter of a rectangle by adding the measures of the sides.

Learning Goal:

- Level 2-3 - Find the perimeter of a polygon in a real-world scenario (without support level 3, with support level 2).
- Level 1 - Count units to find the perimeter of a polygon using an active response (e.g., voice output device, eye gaze board).

Essential Questions:

- How do I calculate perimeter?
- How is perimeter measured?

Vocabulary:

- Perimeter - The distance around a two-dimensional shape.
- Unit - The general term meaning 1.

Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.4 Determine the perimeter of a rectangle by adding the measures of the sides.	M.7.G.4 Know the formulas for the area and circumference of a circle, and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize attributes or characteristics of an object, such as color, orientation, length, width, and weight.	Recognize and explain measurable (e.g., height, depth, diameter, weight) and non-measurable (e.g., color or orientation) attribute values.	Communicate understanding that length is the measure along a side of a shape or object and perimeter is the measure around a shape or object, beginning and ending at the same point, and without any overlap.	Calculate the perimeter of a shape by adding the measures of all the sides. Calculate the perimeter of a rectangle drawn on a grid paper by counting the unit squares contained within the boundary of the shape.	perimeter of a square or rectangle drawn on a graph paper using the x-coordinates of the vertices.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to calculate perimeter, students begin by learning to notice what is new. The educator draws the students' attention to new objects or stimuli, labels them (e.g., "these are two long cubes and short cubes," or "you have two fidgets; one is big and one is small but they are both fidgets"), and the student observes, feels, or otherwise interacts with it. Educators encourage students to begin placing like objects together, drawing attention to the characteristics that make an item the same or different.

How is the Distal Precursor related to the Target?
As students develop their attention to objects and notice the difference between objects, they will begin working on recognizing and describing measurable attributes. Students need lots of experience making direct comparisons between objects. Educators should use the comparison words (e.g., big/small, tall/short, longer/shorter). While students do not need to say them, they do need to learn their meaning.
M.EE.7.G. 4 Determine the perimeter of a rectangle by adding the measures of the sides.

Map Key

IP Initial Precursor
DP Distal Precursor
PP Proximal Precursor
T Target
S Successor
UN Untested
Boxes indicate tested nodes

Rubric of Student Success

M.EE.7.G.4 - Determine the perimeter of a rectangle by adding the measures of the sides.

Level 3 Students will... Level 3 - Find the perimeter of a polygon in a real-world scenario	Level 2 Students will... Level 2 - Find the perimeter of a polygon in a real-world scenario, with support	Level 1 Students will... Level 1 - Count units to find the perimeter of a polygon using an active response (e.g., vice output device, eye gaze board)
Successor and Target Students will... Successor	Proximal Precursor and Distal Precursor Students will...	Initial Precursor Students will...
- Use coordinates to calculate perimeters of polygons	Proximal Precursor - Explain perimeter - Explain length	- Recognize attribute values
Target - Calculate the perimeter of a rectangle by counting unit lengths on a grid - Calculate perimeter by adding all the side lengths	Distal Precursor - Describe measurable attributes - Recognize measurable attributes	

Instructional Ideas

M.EE.7.G.4 - Determine the perimeter of a rectangle by adding the measures of the sides.

Units of measure can be used to solve real world problems.
The big idea is that formulas are used to calculate perimeter.

- Introduce by asking the essential questions.
- Calculate the perimeter of a rectangle.
- Use a place like the school or a garden that has a fence around it, ask, "What goes all around the outside of the school to make a border of the school or fence? Discuss responses.
- Tell students that the distance around the outside of the school is called the perimeter of the school.
- While modeling, it maybe helpful to have tangible manipulatives for students to visualize concepts and practice with, such as stackable counting cubes.
- Explain that the perimeter is the distance around an object or shape.
- Model how to find the perimeter of the object.
- Comment aloud as you model. For example, say, "Perimeter is the distance around the outside edge of a shape. I need to add the lengths of each side to find the perimeter. $6+6+6+6=24$. The perimeter of this shape is 24 units.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

side \#3 = 6 units

63 | Page

65 \| Page

$66 \mid P a g e$

67 | Page

$68 \mid P$ age

69 \| Page

Area and Perimeter Mixed Challenge Cards
1.b) Allen planted a garden that is 5 feet wide and 4 feet long. What is the perimeter of the garden?

Area and Perimeter Mixed Challenge Cards
1.a) Allen planted a garden that is 5 feet wide and 4 feet long. What is the area of the garden?

Area and Perimeter Mixed Challenge Cards
2.a) Ismary ran around a rectangular trail. One side of the trail measured 5 miles. Another side of the trail measured 2 miles. What is the area of the trail?

Area and Perimeter Mixed Challenge Cards
2.b) Ismary ran around a rectangular trail. One side of the trail measured 5 miles. The other side of the trail measured 2 miles. What is the perimeter of the trail?

Area and Perimeter Mixed Challenge Cards
3.b) Penelope glued a ribbon around a clipboard. The clipboard was 9 inches wide and 11 inches tall. What is the length of the ribbon she used?

Area and Perimeter Mixed Challenge Cards
3.a) Penelope glued a ribbon around a clipboard. The clipboard is 9 inches wide and 11 inches tall. What is the area of the clipboard?

Area and Perimeter Mixed Challenge Cards
4.a) The Wyatt family measured their new TV. It was 3 feet tall and 5 feet wide. What is the area of the TV?

Area and Perimeter Mixed Challenge Cards
4.b) The Wyatt family measured their new TV. It was 3 feet tall and 5 feet wide. What is the perimeter of the TV?

Area and Perimeter Mixed Challenge Cards
5.a) A DVD case measures 6 inches wide and 7 inches tall. What is the area of the DVD case?

Area and Perimeter Mixed Challenge Cards

5.b) A DVD case measures 6 inches wide and 7 inches tall. What is the perimeter of the DVD case?

Area and Perimeter Mixed Challenge Cards
6.a) A window measures 4 feet long and 2 feet wide. What is the area of the window?

Area and Perimeter Mixed Challenge Cards
Area and Perimeter Mixed Challenge Cards
7.a) A new classroom rug measures 5 feet long and 6 feet wide. What is the area of the rug?

Area and Perimeter Mixed Challenge Cards
7.b) A new classroom rug measures 5 feet long and 6 feet wide. What is the perimeter of the rug?

Area and Perimeter Mixed Challenge Cards
8.a) Grandma sewed a quilt. The quilt measured 4 feet wide and 12 feet long. What is the area of the quilt?

74 | P a g e

76 | Page

February Math Pacing Guide
 $7^{\text {th }}$ Grade

M.EE.7.NS.2.b - Solve division problems with divisors up to five and also with a divisor of 10 without remainders.

Learning Goal:

- Level 2-3- Solve linear equations in one variable.
- Level 1 - Combine and partition sets.

Essential Questions:

- What are the parts of division problem?
- What model can I use to help me solve this division problem?

Vocabulary:

- Variable - A symbol for a value we don't know yet. It is usually a letter x or y .

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.2.b Solve division problems with divisors up to five	M.7.NS.2.b Understand that integers can be divided, provided and also with a divisor of 10 without remainders. that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of set by recognizing a group of objects sharing an attribute. Communicate understanding of a subset by recognizing a subset as a set or group of objects within a larger set that share an attribute.	Communicate understanding that repeated subtraction is a subtraction of equal groups from a number (e.g., 15-5-5-5). Represent repeated subtraction using equations (e.g., 15-5-5-5 = 0). Solve repeated subtraction problems by identifying the number of times a number is subtracted repeatedly from another number to reach zero.	Show understanding of division by arranging the total number of objects into two or more equal groups and communicate that the total number of objects (i.e., dividend) divided by the number of groups (i.e., divisor) is equal to the number of objects in each group (i.e., quotient).	Divide numbers within 100 by $1,2,3,4,5$, and 10 and determine the quotient, using manipulatives.	Recognize the inverse relationship between multiplication and division, and communicate understanding that the number of groups multiplied by the number of objects in each group equals the total number of objects and that the total number of objects divided by the number of groups equals the number of objects in each group.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to understand division, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to use their language to convey their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set, subsets, and separateness.

Set

How is the Distal Precursor related to the Target?

As students' understanding of labeling and counting sets develops, they will begin working on adding and taking away items from a set. Educators provide opportunities for students to work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters they would line up, then four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair) and taking equal shares away (subtracting) from each person, object, or space. Educators will provide opportunities for students to connect their understanding of subtraction (starting with the whole and taking away a part) to repeated subtraction. For example, if the educator has 12 balls, and each team gets 4 balls, how many teams will there be? By subtracting 4 from the whole, we made 3 equal sets so there are 3 teams.

M.EE.7.NS.2.b Solve division problems with divisors up to five and also with a divisor of 10 without remainders.

Rubric of Student Success

M.EE.7.NS.2.b - Solve division problems with divisors up to five and also with a divisor of 10 without remainders.

Level 3 Students will... Level 3 - Find the perimeter of a polygon in a real-world scenario	Level 2 Students will... Level 2 - Find the perimeter of a polygon in a real-world scenario, with support	Level 1 Students will... Level 1 - Count units to find the perimeter of a polygon using an active response (e.g., vice output device, eye gaze board)
Successor and Target Students will...	Proximal Precursor and Distal Precursor Students will...	Initial Precursor Students will...
Successor - Use coordinates to calculate perimeters of polygons	Proximal Precursor - Explain perimeter - Explain length	Initial Precursor - Recognize attribute values
Target - Calculate the perimeter of a rectangle by counting unit lengths on a grid - Calculate perimeter by adding all the side lengths	Distal Precursor - Describe measurable attributes - Recognize measurable attributes	

Instructional Ideas

M.EE.7.NS.2.b - Solve division problems with divisors up to five and also with a divisor of 10 without remainders.

Numbers can be represented, displayed, converted, and compared
The big idea is that concepts and properties of division are the same whether using whole numbers, fractions, or decimals.

- Introduce by asking the essential questions.
- Introduce repeated subtraction and model.
- Allow students to have their own anchor charts.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

$\frac{\text { K5 }}{\text { Learivig }}$		
Dividing by 2 or 3		
Grade 3 Division Worksheet		
Find the quotient.		
1. $21 \div 3=$	2. $15 \div 3=$	3. $6 \div 3=$
4. $14 \div 2=$	5. $6 \div 2=$	6. $12 \div 2=$
7. $2 \div 2=$	8. $18 \div 2=$	9. $18 \div 3=$
10. $4 \div 2=$	11. $27 \div 3=$	12. $20 \div 2=$
13. $8 \div 2=$	14. $10 \div 2=$	15. $24 \div 3=$
16. $3 \div 3=$	17. $16 \div 2=$	18. $12 \div 3=$
19. $30 \div 3=$	20. $9 \div 3=$	21. $21 \div 3=$
22. $12 \div 2=$	23. $24 \div 3=$	24. $16 \div 2=$
25. $2 \div 2=$	26. $10 \div 2=$	27. $18 \div 2=$

Division Facts: Dividing by 4 or 5		
Grade 3 Division Worksheet		
Find the quotient.		
1. $45 \div 5=$	2. $5 \div 5=$	3. $10 \div 5=$
4. $50 \div 5=$	5. $40 \div 4=$	6. $15 \div 5=$
7. $12 \div 4=$	8. $24 \div 4=$	9. $8 \div 4=$
10. $20 \div 5=$	11. $25 \div 5=$	12. $20 \div 4=$
13. $32 \div 4=$	14. $40 \div 5=$	15. $28 \div 4=$
16. $4 \div 4=$	17. $30 \div 5=$	18. $35 \div 5=$
19. $16 \div 4=$	20. $36 \div 4=$	21. $25 \div 5=$
22. $40 \div 5=$	23. $20 \div 4=$	24. $30 \div 5=$
25. $5 \div 5=$	26. $25 \div 5=$	27. $35 \div 5=$
Online reading \& math for K-5		© ${ }^{\text {mww }}$

$\frac{\text { Dividing by } 10}{\text { Grade } 3 \text { Division Worksheet }}$

1 Division Facts				
1	\div	1	=	1
2	\div	1	=	2
3	$\stackrel{+}{+}$	1	=	3
4	\div	1	=	4
5	\div	1	=	5
6	\div	1	=	6
7	\div	1	=	7
8	\div	1	=	8
9	\div	1	=	9
10	\div	1	$=$	10
11	\div	1	=	11
12	\div	1	=	12

2 Division Facts

2	\div	2	=	1
4	\div	2	=	2
6	\div	2	=	3
8	\div	2	=	4
10	\div	2	=	5
12	\div	2	=	6
14	\div	2	=	7
16	\div	2	=	8
18	\div	2	=	9
20	\div	2	=	10
22	\div	2	=	11
24	\div	2	=	12

3 Division Facts				
3	\div	3	=	1
6	\div	3	=	2
9	\div	3	=	3
12	\div	3	=	4
15	\div	3	=	5
18	\div	3	=	6
21	\div	3	=	7
24	\div	3	=	8
27	\div	3	=	9
30	\div	3	=	10
33	\div	3	=	11
36	\div	3	=	12

4 Division Facts

4	\div	4	=	1
8	\div	4	=	2
12	\div	4	=	3
16	\div	4	=	4
20	\div	4	=	5
24	\div	4	=	6
28	\div	4	=	7
32	\div	4	=	8
36	\div	4	=	9
40	\div	4	=	10
44	\div	4	=	11
48	\div	4	=	12

5 Division Facts			
$5 \div 5$	$=$	1	
$10 \div$	5	$=$	2
$15 \div$	5	$=$	3
$20 \div$	5	$=$	4
$25 \div$	5	$=$	5
$30 \div$	5	$=$	6
$35 \div$	5	$=$	7
$40 \div$	5	$=$	8
$45 \div$	$=$	9	
$50 \div$	5	$=$	10
$55 \div$	$=$	11	
$60 \div$	5	12	

10 Division Facts
$10 \div 10=1$
$20 \div 10=$
$30 \div 10=$
$40 \div 10=$
$50 \div 10=$
$60 \div 10=$
$70 \div 10=$
$80 \div 10=$
$90 \div 10$
$90 \div 10$
$100 \div 10$
$110 \div 10$
$120 \div$

Credits

Websites Used for Worksheets and Lesson Ideas:

- https://www.education.com
- https://www.twinkl.com
- https://www.superteacherworksheets.com
- https://www.easyteacherworksheets.com
- https://www.mathworksheets4kids.com
- https://www.math-salamanders.com
- https://www.math-drills.com
- https://www.mathsisfun.com/definitions/index.html

Resources Used to Help Create the Pacing Guide:

DLM Essential Elements Unpacking

- https://www.dlmpd.com/dlm-essential-elements-unpacking

Instructional Resources for YE Model States

- https://dynamiclearningmaps.org/instructional-resources-ye/mathematics

Dynamic Learning Maps

- https://dynamiclearningmaps.org

Unique Learning System

- https://www.n2y.com/unique-learning-system

[^0]: - (${ }_{2}$ st!un) pasenbs st!un

 Area of the donation sign $=$

[^1]: -

[^2]: Grade 3
 Activity \#328
 Relevant Chapter in the Digi-Block Comprehensive Teacher's Guide: 106
 Book III, Unit4-1: Developing Two Meanings for Division, pages 103

[^3]: Materials
 Each pair of students needs:

 - 9 small paper plates
 - 50 single blocks, packed or unpacked

