Essential Elements
 Math Pacing Guide

January

Background

The Essential Elements Math Pacing Guide was inspired by realizing that there is a small amount of information found on the internet to help support educators who teach those who follow an alternate curriculum for our amazing 1% of the student population in education. I wanted to create something that could help serve as a guide, a support, an understanding of how to hold our students to high academic achievement, just like their regular education peers.

Regular education materials are abundant and come with pacing guides with how to implement the prescribed curriculum that the school decided to buy into. Within those curriculums, a good majority of publishers incorporated how to differentiate Instruction for struggling learners, for English Language Learners and/or English as a Second Language learners. However, there does not seem to be a supplementary curriculum that aligns to how to modify instruction and materials for those who follow the alternate curriculum so the 1% of students with disabilities aligned to the alternate curriculum could also learn a modified version of the same materials as their non-disabled peers in an inclusive setting.

Your partner in education, Jeanette Nowak

Updated June 2022

Table of Contents

January Outline 4
How to Access Math Instruction and Materials from Unique. 5
Understanding Differentiated Levels In Unique 6
Measuring Success by the Essential Elements Standards 6
January Math Pacing Guide $6^{\text {th }}$ Grade 7-31
January Math Pacing Guide $7^{\text {th }}$ Grade 32-54
January Math Pacing Guide $8^{\text {th }}$ Grade 55-72
Credits 73

January Outline

Standards covered during January:

- M.EE.6.EE.3 - Apply the properties of addition to identify equivalent numerical expressions.
- M.EE.6.EE.5-7 - Match an equation to a real-world problem in which variables are used to represent numbers.
- M.EE.7.EE. 1 - Use the properties of operations as strategies to demonstrate that expressions are equivalent.
- M.EE.8.EE.7 - Solve simple algebraic equations with one variable using addition and subtraction.

According to the Dynamic Learning Maps (DLM) website, these are the commonly tested standards that are used for the DLM assessment.

1. https://www.n2y.com/unique-learning-system/
2. Log in using the provided username and password you received
3. Click on Unique Learning System
4. Click on the three lines \longrightarrow U@le learning system
5. Select Monthly Lessons/Unit Lessons共
6. Select Math
a. When selecting materials, select PDF icon to save and print

Understanding Differentiated Levels in Unique

- Level 3 Learners - can read text and can participate more independently in the lesson (Independent)
- Level 2 Learners- require pictorial support and require mild to moderate support to participate in the lesson (Supported)
- Level 1 Learners- require extensive supports to participate in the lesson (Participatory).

Measuring Success by the Essential Elements Standards

Students who take DLM assessments are instructed and assessed on Essential Elements. Essential Elements are grade-specific expectations about what students with the most significant cognitive disabilities should know and be able to do. The Essential Elements relate to college and career readiness standards for students in the general population.

January Math Pacing Guide

$6^{\text {th }}$ Grade
M.EE.6.EE. 3 - Apply the properties of addition to identify equivalent numerical expressions.

Learning Goal:

- Level 2-3 - Evaluate if equations are true or false.
- Level 1 - Students combine and compare sets.

Essential Questions:

- Do the two sides of this problem have equal value?
- Is this expression true (equal) or false (not equal)?

Vocabulary:

- Expression - Numbers, symbols and operators (such as + and \times) grouped together that show the value of something.
- Equal - Exactly the same amount or value.
- Commutative - When adding two numbers, the order in which you add them does not matter as the sum will stay the same.
- Associative - When there are only addition operations within a number sentence, the grouping of the numbers will not matter and the sum will stay the same.

Mini-Map for M.EE.6.EE. 3
 Subject: Mathematics
 Expressions and Equations (EE)
 Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.EE.3 Apply the properties of addition to identify equivalent numerical expressions.	M.6.EE.3 Apply the properties of operations to generate equivalent expressions.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more sets of objects to form a new set. Compare two or more sets containing objects to communicate whether a set has the same, different, or an equal number of objects than the other set.	Represent addition or subtraction word problems or models with equations (e.g., 8 marbles +3 marbles $=$ 11 marbles). Recognize that the unknown quantity in an equation is represented using a symbol or letter (e.g., 5 $+b=8$).	Apply commutative (e.g., $3+4=4+3$) and associative [e.g., $2+(3$ $+5)=(2+3)+5]$ properties of addition to add two or more numbers. Evaluate an equation to be true or false by determining whether the numerical value on both sides of an equation is the same or different (e.g., analyze whether 5+7= $8+4)$.	Create equivalent expressions by applying commutative and associative properties of addition (e.g., the expression $5+8$ is equal to $8+5$ due to the commutative property of addition).	Recognize or generate an equivalent expression involving addition or subtraction operations using commutative and associative properties of addition and multiplication [e.g., recognize that the expression $(8+6) \times 5$ is equivalent to $5 \times(6+$ 8)].

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

Understanding how to evaluate equations and using the properties of addition to create equivalent expressions requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. Then, combine the sets, give it a new label, and count the set.

NOTE: Educators can work on the Initial Precursor level using the sets of numbers that students working at the Target level are adding and subtracting.

How is the Distal Precursor related to the Target?
As students begin to understand labeling and counting small sets, they begin to use the number sequence and become more adept at tracking individual objects. Work on this skill using a variety of sets, labeling and counting the sets, and moving items in and out of the sets, labeling and counting the set again. Additionally, the educators will pair those sets with the symbolic representations for addition and subtraction (e.g., $3+$ $2=$? , 3-2 = ?).

NOTE: Educators can work on the Distal Precursor level using the sets of numbers that students working at the Target level are adding and subtracting.
M.EE.6.EE. 3 Apply the properties of addition to identify equivalent numerical expressions.

Map Key

IP Initial Precursor DP Distal Precursor PP Proximal Precursor
T Target
S Successor
UN Untested
Boxes indicate tested nodes

Rubric of Student Success

M.EE.6.EE. 3 - Apply the properties of addition to identify equivalent numerical expressions.

Level 3 Students will... Successor and Target Students will...	Level 2 Students will... Proximal Precursor and Distal Precursor Students will...	Level 1 Students will... Initial Precursor Students will...
Level 3 - Evaluate if equations are true or false.	Level 2 - Evaluate if equations are true or false.	Level 1 - Students combine and compare sets.
Successor - Use properties of operations to generate equivalent expressions involving subtraction - Use properties of operations to generate equivalent expressions involving addition	Proximal Precursor - Apply associate property of addition - Apply commutative property of addition - Evaluate if equations are true or false	Initial Precursor - Combine sets - Compare sets
- Use properties of addition to create an equivalent algebraic expression - Recognize equivalent algebraic expressions	Distal Precursor - Represent addition with equations - Represent the unknown in an equation - Represent subtraction with equations	

11 \| a ge

Instructional Ideas

M.EE.6.EE. 3 - Apply the properties of addition to identify equivalent numerical expressions.

Number sentences and equations show a relationship and can be written in different ways.
The big idea is that a number expression is a math problem that uses numbers and letters to represent variables and an equals sign to show that two quantities have equal value.

- Introduce by asking the essential questions.
- Recognize equivalent algebraic expressions.
- Represent the unknown in the equation.
- Use properties of operation to generate equivalent expressions involving addition, subtraction, multiplication, or division.
- Identify equivalent number sentences.
- Use symbols for equal and not equal.
- Might have to make up your own worksheets but can use the ones provided as inspiration.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Provide students with their own number line and anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- https://www.msnowakhomeroom.com/3b-equations.html

Basic Properties of Numbers		
Property	Explanation	Addition
Commutative	Order doesn't matter	$\begin{aligned} a+b & =b+a \\ e x: 1+2 & =2+1 \\ 3 & =3 \end{aligned}$
Associative	Grouping doesn't matter	$\begin{aligned} (a+b)+c & =a+(b+c) \\ e x:(2+3)+4 & =2+(3+4) \\ 5+4 & =2+7 \\ 9 & =9 \end{aligned}$

Clues Guide 3
Write and Solve
Write and Solve Addition Equations 1

4	Write an addition equation when you see these words: How many altogether?				
\mathbf{A} and \mathbf{B} are known numbers. C is the unknown answer to your problem. Use this model to write your equation.					
A	+	B	=		
Follow these steps to solve the equation for C. 1. Fill in the empty spaces with the known numbers. Write the variable for the unknown number.					
A	4	B	E		
	4		$=$		
2. Add the numbers for \boldsymbol{A} and \mathbb{B}					
$A+B$			=		
			$=$		
3. $\mathrm{C}=$ how many altogether?					
4. Check your work. Fill in the numbers for A, B and C. Solve.					
A	4	B	三		
	4		$=$		
			$=$		
Is the equation true?				Yes	No
5. If the equation is true, then your answer for \mathbf{C} is correct.					

Clues Guide 4
Write and Solve
Write and Solve Addition Equations 2

Clues Guide 5
Write and Solve

\because	Write an addition equation when you see these words: How many altogether?				
\mathbf{A} and \mathbf{C} are known numbers. \mathbf{B} is the unknown answer to your problem. Use this model to write your equation.					
A	+	$+$	B	=	C
Follow these steps to solve the equation for B. 1. Fill in the empty spaces with the known numbers. Write the variable for the unknown number.					
A	+	+	B	=	C
	+	$+$	B	$=$	

3. Write the difference in each space below.

	\pm	B	$=$	
4. A - A = 0. 0 = nothing. Remove it. Rewrite the variable, B and difference for C - A. .$\| \begin{array}{l}\text { B }\end{array}$				

5. $\mathbf{B}=$ the answer to the problem.

6 6. Check your work. Fill in the numbers for \mathbf{A}, \mathbf{B} and \mathbf{C} in the equation. Solve.				
\boldsymbol{A}	$\boldsymbol{+}$	\boldsymbol{B}	$=$	\boldsymbol{C}
	+		$=$	
		$=$		

Is the equation true?
7. If the equation is true, then your answer for \mathbf{B} is correct.
Name:

[^0]19 | P a g e

[^1]20 | Page

21 | P a g e

:suoḷnnbョ Бu1̣upןpg

nemamo

Aim: I can balance equations.
Both sides of an equals sign should make the same total.
Work out the answer to the calculation on the left-hand side and write this in both circles.

Find the missing number on the right, so the calculation makes the number in the circle.

N

3. $1+4$
3.

o

II

II

23 | Page

:su0!̣pnbヨ Бu!כupןpg

Addition to 20

Aim: I can balance equations.
Both sides of an equals sign should make the same total.
Work out the answer to the calculation on the left-hand side and write this in both circles.

Find the missing number on the right, so the calculation makes the number in the circle.

II

$=Z+8 \tau$
$-$

II

N

1
+
+

\bullet
n

 $+$

+

25 \| Page

26 | Page

28 | Page
True or False Subtraction Worksheet

30 | P a g e
Nare: Directions Read fie oddition equatiors belon Are they tiue? Are bot lides of the equal ign the some? Ril
in the bubbles that show the true equations

January Math Pacing Guide

$6^{\text {th }}$ Grade
M.EE.6.EE.5-7 - Match an equation to a real-world problem in which variables are used to represent numbers.

Learning Goal:

- Level 2-3 - Students will represent real-world problems as equations.
- Level 1 - Students will combine and partition sets.

Essential Questions:

- What operation is needed in this problem?
- What are the known quantities and the unknown variable in the problem?
- What does the variable represent?
- Which equations matches this problem?

Vocabulary:

- Quantity - How much there is of something.
- Variable - A symbol for a value we don't know yet. It is usually a letter like x or y .
- Operation - A mathematical process with the most common as add, subtract, multiply, and divide (+, -, x, /).

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.EE.5-7 Match an equation to a real-world problem in which variables are used to represent numbers.	M.6.EE.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
	M.6.EE.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. M.6.EE.7 Solve real-world and mathematical problems by for cases in which p, q and x are all nonnegative rational numbers.

Linkage Level Description

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two sets of objects to form a new set. Divide objects in a set into two or more subsets.	Represent addition or subtraction word problems or models with equations (e.g., representing 6 marbles plus 2 marbles equal 8 marbles as $6+2=8$ marbles).	Represent expressions using variables and numbers (e.g., express subtract k from 12 as 12 $-k$). Recognize that the unknown quantity in an equation is represented using a symbol or letter (e.g., $5+b=8$).	Represent a given realworld problem (e.g., Joe has 6 markers. Joe has some crayons. Joe has a total of 10 art supplies. How many crayons does Joe have?) with a mathematical equation (e.g., $6+x=10$).	Solve real-world problems with nonnegative rational numbers by representing the situation with a mathematical equation (e.g., Mark has 3.5

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
				inches of string. Mark gets 1 more inch of string. Which equation shows how much string Mark has all together? $3.5+1=x)$.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

The knowledge needed to solve addition and subtraction realworld problems links back to an understanding of how to create sets, but it also requires learning to manipulate sets (i.e., combining and separating or partitioning). Provide students many opportunities to take a set of objects (e.g., tiles, linking cubes, buttons) and separate them based on a given characteristic (e.g., shape, color, size) into two distinct sets, and separate them again based on another characteristic. Guide students to notice how the set size changes each time the educator combines or partitions the sets.

How is the Distal Precursor related to the Target?
As student understanding of combining and partitioning sets increases, educators should take care to use the words "addition" and "subtraction" while defining and demonstrating their meanings and as students combine and partition sets. While students do not need to say the words, they do need to learn the meanings. Educators provide lessons that help students represent addition and subtraction in multiple ways (e.g., using objects, fingers, drawings, sounds, acting out situations, and writing equations).
M.EE.6.EE.5-7 Match an equation to a real-world problem in which variables are used to represent numbers.

Rubric of Student Success

M.EE.6.EE.5-7 - Match an equation to a real-world problem in which variables are used to represent numbers.

Level 3 Students will... Successor and Target Students will...	Level 2 Students will... Proximal Precursor and Distal Precursor Students will...	Level 1 Students will... Initial Precursor Students will...
Level 3 - Students will represent real-world problems as equations.	Level 2 - Students will represent real-world problems as equations.	Level 1 - Students will combine and partition sets.
Successor - Solve real-world problems using equations with non-negative rational numbers Target - Represent real-world problems as equations	Proximal Precursor - Represent the unknown in an equation - Represent expressions with variables Distal Precursor - Represent addition with equations - Represent subtractions with equations	Initial Precursor - Combine sets - Partition sets

Instructional Ideas

M.EE.6.EE.5-7 - Match an equation to a real-world problem in which variables are used to represent numbers.

Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.

The big idea is that letters are used in mathematics to represent generalized properties, unknowns in equations, and relationships between quantities.

- Introduce by asking the essential questions.
- Identify what operation is needed in the real-world problem.
- Identify the known quantities and the unknown variable.
- Identify the structure of the equation.
- Match an equation to a real-world problem.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

\sim	\forall	∞
II	11	II
+	\forall	σ
+	1	

Numerical Expressions Matching Game	
Nurthur saw three times as many red birds as blue birds (b).	Kamal ran half as many miles on Tuesday as Monday (m).
How many red birds did he see?	How many miles did he
run on Tuesday?	

Numerical Expressions Matching Game

41 IPage
Numerical Expressions Matching Game Answers

42 \| a ge

[^2]43 | Page

44 \| a ge

45 | Page

46 | P a g e

Since $A=\ldots$, Mary Beth hangs up ___ fishing poles.

| Write an addition equation when you see these |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| words: How many altogether? | | A and C are known numbers. B is the unknown answer to your problem. |
| :--- |
| Use this model to write your equation. |

A - B = C \quad| use manipulatives |
| :--- |
| or calculator to solve |

life jackets.
tho spuey ouvew

$\mathbf{A}-\mathbf{B}=\mathbf{C}$
Mary Beth and Keisha are looking for fishing poles at camp.
Ase manipulatives
or calculato

Write the equation.					
\boldsymbol{A}	-	\boldsymbol{B}	$\boldsymbol{=}$	\boldsymbol{C}	
	-		$=$		

 | \boldsymbol{A} | \boldsymbol{m} | \boldsymbol{B} | \boldsymbol{F} | \boldsymbol{C} |
| :---: | :---: | :---: | :---: | :---: | (11)

fishing poles.
Mary Beth finds

January Math Pacing Guide

$7^{\text {th }}$ Grade
M.EE.7.EE. 1 - Use the properties of operations as strategies to demonstrate that expressions are equivalent.
*** Please refer to the December pacing guide as it has the standard and additional materials.

January Math Pacing Guide

$8^{\text {th }}$ Grade
M.EE.8.EE.7 - Solve simple algebraic equations with one variable using addition and subtraction.

Learning Goal:

- Level 2-3- Solve linear equations in one variable.
- Level 1 - Combine and partition sets.

Essential Questions:

- What am I trying to figure out in this equation?
- What do I know about the properties of addition and subtraction that can help me solve this problem?

Vocabulary:

- Variable - A symbol for a value we don't know yet. It is usually a letter x or y .

Mini-Map for M.EE.8.EE. 7
Subject: Mathematics
Expressions and Equations (EE)
Grade: 8

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.8.EE.7 Solve simple algebraic equations with one variable using addition and subtraction.	M.8.EE.7 Solve linear equations in one variable.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Combine two or more sets of objects or numbers to form a new set. Split one set into multiple sets grouped together by similar characteristics.	Demonstrate understanding of addition by combining the objects of two or more sets and demonstrate understanding of subtraction by removing some objects from a larger set.	Determine the unknown/missing addend (e.g., $8+x=12$) or sum (e.g., $4+6=x$) when given an equation with addition operation and determine the unknown/missing minuend or subtrahend (e.g., $9-x=16$) or the difference (e.g., $13-5=$ x) when given an equation with subtraction operation.	Solve linear equations involving addition, subtraction, multiplication, or division operations in one variable (e.g., 8.4 + $x=17.56$).	Solve linear inequalities in one variable (e.g., $6<$ $8+x$).

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

Solving linear equations requires a student to count small units, recognizing that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. The educator presents a set, labels it (e.g., two balls, one marker, three CDs), counts the items, labels it again, and encourages students to use numbers to label and count the separate sets. The general goal is to explore how the set changes when items are separated out (partitioned) or combined.

How is the Distal Precursor related to the Target?
As students begin to understand labeling and counting small sets, they begin to use the number sequence and become more adept at tracking individual objects. They can recognize when items are added to a set or when items are taken away. Work on this skill using a variety of sets, labeling and counting the set, and moving items in and out of the set, labeling and counting the set again.

NOTE: Educators can work on the Distal Precursor level using the sets of numbers that students working at the Target level are working with.
M.EE.8.EE. 7 Solve simple algebraic equations with one variable using addition and subtraction.

Map Key

IP Initial Precursor DP Distal Precursor PP Proximal Precursor T Target
S Successor
UN Untested
Boxes indicate tested
nodes

Rubric of Student Success

M.EE.8.EE. 7 - Solve simple algebraic equations with one variable using addition and subtraction.

Level 3 Students will... Successor and Target Students will...	Level 2 Students will... Proximal Precursor and Distal Precursor Students will...	Level 1 Students will... Initial Precursor Students will...
Level 3 - Solve linear equations in one variable.	Level 2 - Solve linear equations in one variable.	Level 1 - Combine and partition sets.
Successor - Solve linear inequalities in 1 variable Target - Solve linear equations in one variable	Proximal Precursor - Determine the unknown in an addition equation - Determine the unknown in a subtraction problem Distal Precursor - Demonstrate the concept of addition - Demonstrate the concept of subtraction	Initial Precursor - Combine sets - Partition sets

nstructional Ideas

M.EE.8.EE.7 - Solve simple algebraic equations with one variable using addition and subtraction.

Equations express a relationship that can be used to solve an unknown.

The big idea is that variables represent the unknown in an equation.

- Introduce by asking the essential questions.
- Determine the unknown in an equation.
- Use property of inverse operation (addition/subtraction) to complete the inverse to each side of the equation.
- Isolate the variable to solve.
- Solve algebraic expressions using addition or subtraction.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
Clues Guide 4
Write and Solve
Write and Solve Addition Equations 2

| Write an addition equation when you see these |
| :--- | :---: | :---: | :---: | :---: |
| words: How many altogether? |$|$| B and C are known numbers. A is the unknown answer to your problem. |
| :--- |
| Use this model to write your equation. |

2. Subtract the number for \mathbf{B} from both sides of the equal sign.								
\boldsymbol{A}	$\boldsymbol{+}$	\boldsymbol{B}	-	\boldsymbol{B}	$\boldsymbol{=}$	\boldsymbol{C}	$=$	\boldsymbol{B}
\boldsymbol{A}	$\boldsymbol{+}$		-		$=$			

3. Write the difference in each space below.

\boldsymbol{A}	$=$		
4. B-B = 0. 0 = nothing. Remove it. Rewrite the variable, \mathbf{A} and difference for $\mathbf{C}-\mathbf{B}$.			
\boldsymbol{A}		$=$	

5. A = the answer to the problem.
6. Check your work. Fill in the numbers for \mathbf{A}, \mathbf{B} and \mathbf{C} in the equation. Solve.

Is the equation true?
7. If the equation is true, then your answer for \mathbf{A} is correct.
$61 \mid P a g e$
Clues Guide 5
Write and Solve

Ψ	Write an addition equation when you see these words: How many altogether?			
A and \mathbf{C} are known numbers. B is the unknown answer to your problem Use this model to write your equation.				
A	+	B	=	C
Follow these steps to solve the equation for B. 1. Fill in the empty spaces with the known numbers. Write the variable for the unknown number.				
\boldsymbol{A}	+	B	=	C
	+	B	=	

3. Write the difference in each space below.

	+	B	$=$	
$\begin{array}{c}\text { 4. A - A = 0. 0 = nothing. Remove it. } \\ \text { Rewrite the variable, } \mathbf{B} \text { and difference for C-A. }\end{array}$				
	\boldsymbol{B}	$=$		

5. B = the answer to the problem.

6. Check your work. Fill in the numbers for A, B and \mathbf{C} in the equation. Solve.					
\boldsymbol{A}	$\boldsymbol{+}$	\boldsymbol{B}	$\boldsymbol{=}$	\boldsymbol{C}	
	$\boldsymbol{+}$		$=$		
		$=$			

Is the equation true?
7. If the equation is true, then your answer for \mathbf{B} is correct.
Clues Guide 7
Write and Solve Subtraction Equations 2

■	Write a subtraction equation when you see these words: How many are left? How many more than? How many less than?							
\mathbf{B} and \mathbf{C} are known numbers. \mathbf{A} is the unknown answer to your problem. Use this model to write your equation.								
A	-	B			=	\boldsymbol{C}		
Follow these steps to solve the equation for A. 1. Fill in the empty spaces with the known numbers. Write the variable for the unknown number.								
A	-	B			$=$	C		
A	-				$=$			
2. Since \mathbf{B} is negative, add the number for \mathbf{B} to both sides of the equal sign.								
A		-B	+	B	=	C	+	3
A			+		$=$		+	

A			$=$		
4. $-\mathbf{B}+\mathbf{B}=0 . \quad 0=$ nothing. Remove it. Rewrite only the variable, A and sum for $\mathbf{C}+\mathbf{B}$.					
A			$=$		
5. $\mathbf{A}=$ the answer to	prob				
6. Check your work.	in	rs fo	in	quati	Ive.
A	-	B	=		
	-		$=$		
			=		
Is the equation true?				Yes	No
7. If the equation is true, then your answer for \mathbf{A} is correct.					

Write and Solve Subtraction Equations 3

[^3]

Education.com

66 | P a g e

68 \| Page

70 | Page

72 | Page

Credits

Websites Used for Worksheets and Lesson Ideas:

- https://www.education.com
- https://www.twinkl.com
- https://www.superteacherworksheets.com
- https://www.easyteacherworksheets.com
- https://www.mathworksheets4kids.com
- https://www.math-salamanders.com
- https://www.math-drills.com
- https://www.mathsisfun.com/definitions/index.html

Resources Used to Help Create the Pacing Guide:

DLM Essential Elements Unpacking

- https://www.dlmpd.com/dlm-essential-elements-unpacking

Instructional Resources for YE Model States

- https://dynamiclearningmaps.org/instructional-resources-ye/mathematics

Dynamic Learning Maps

- https://dynamiclearningmaps.org

Unique Learning System

- https://www.n2y.com/unique-learning-system

[^0]: Printable Worksheets @ www.mathworksheets4kids.com

[^1]: Printable Worksheets @ www.mathworksheets4kids.com

[^2]: Printable Math Worksheets @ www.mathworksheets4kids.com

[^3]: MDOLE, Sumner Unit Transtion. Lefs Go lo Sumnes Camp

