Essential Elements Math Pacing Guide

March

Background

The Essential Elements Math Pacing Guide was inspired by realizing that there is a small amount of information found on the internet to help support educators who teach those who follow an alternate curriculum for our amazing 1% of the student population in education. I wanted to create something that could help serve as a guide, a support, an understanding of how to hold our students to high academic achievement, just like their regular education peers.

Regular education materials are abundant and come with pacing guides with how to implement the prescribed curriculum that the school decided to buy into. Within those curriculums, a good majority of publishers incorporated how to differentiate Instruction for struggling learners, for English Language Learners and/or English as a Second Language learners. However, there does not seem to be a supplementary curriculum that aligns to how to modify instruction and materials for those who follow the alternate curriculum so the 1% of students with disabilities aligned to the alternate curriculum could also learn a modified version of the same materials as their non-disabled peers in an inclusive setting.

Your partner in education,

Jeanette Nowak

Updated July 2022

Table of Contents

March Outline	4
How to Access Math Instruction and Materials from Unique	
Understanding Differentiated Levels in Unique	6
Measuring Success by the Essential Elements Standards	
March Math Pacing Guide 6 th Grade	
March Math Pacing Guide 7 th Grade	36 – 64
March Math Pacing Guide 8 th Grade	
Credits	66

March Outline

Standards covered during February:

- M.EE.6.G.2 Solve real-world and mathematical problems about volume using unit cubes.
- M.EE.6.NS.3 Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.
- M.EE.7.G.2 Recognize geometric shapes with given conditions.
- M.EE.7.NS.2.a Solve multiplication problems with products to 100.
- M.EE.8.G.5 Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.
- M.EE.8.G.9 Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms).

According to the Dynamic Learning Maps (DLM) website, these are the commonly tested standards that are used for the DLM assessment.

How to Access Math Instruction and Materials from Unique

- 1. https://www.n2y.com/unique-learning-system/
- 2. Log in using the provided username and password you received
- 3. Click on Unique Learning System
- 4. Click on the three lines —

- 6. Select Math
 - a. When selecting materials, select PDF icon to save and print

Understanding Differentiated Levels in Unique

- Level 3 Learners can read text and can participate more independently in the lesson (Independent)
- Level 2 Learners- require pictorial support and require mild to moderate support to participate in the lesson (Supported)
- Level 1 Learners- require extensive supports to participate in the lesson (Participatory).

Measuring Success by the Essential Elements Standards

Students who take DLM assessments are instructed and assessed on *Essential Elements*. Essential Elements are grade-specific expectations about what students with the most significant cognitive disabilities should know and be able to do. The Essential Elements relate to college and career readiness standards for students in the general population.

March Math Pacing Guide 6th Grade

M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.

Learning Goal:

- Level 2-3 (2) Use a model to find the volume of a cube or rectangular prism. (3) Use a model or formula to find the volume of cubes and rectangular prisms.
- Level 1 Count unit squares on a model to find the volume of a cube or rectangular prism using an active participation response.

Essential Questions:

- What is volume?
- How do I know when to use unit cubes or unit squares?
- What is the difference between area and volume?
- How can I organize the information to solve for volume?

Vocabulary:

- Unit A general term meaning 1.
- Volume The size of a surface.

Mini-Map for M.EE.6.G.2

Subject: Mathematics

Geometry (G) Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.G.2 Solve real-world and mathematical problems about volume using unit cubes.	M.6.G.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = lwh$ and $V = bh$ to
	find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Calculate the volume of	Solve word problems	Calculate volume of a
understanding of	understanding that	a solid figure by	involving the volume of	rectangular prism using
"separateness" by	volume is the space	counting the total	a rectangular prism by	the volume formula
recognizing objects that	enclosed by a shape or	number of unit cubes in	determining the volume	(volume = height x
are not joined together.	an object, that a unit	a solid figure. Calculate	of the prism. (The	length x width).
Recognize enclosure as	cube is a cube with	the volume of a	volume of a rectangular	
an enclosed space that	edge lengths of one unit	rectangular prism by	prism should be	
lies within a boundary	and a volume of one	packing the box with	determined by packing	
that distinguishes it	cubic unit, and that	unit cubes and counting	the prism with unit	
from the space that lies	volume can be	them.	cubes.)	
outside the boundary.	measured by counting			
	the number of unit			
	cubes needed to			
	completely fill a			
	container or space.			

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to solve problems using unit cubes, students at this level start by exploring objects and experiencing putting various materials into various containers. Educators demonstrate the language of in/out, more/less, big/little, longer/shorter, taller/smaller, wider/thinner, etc.

How is the Distal Precursor related to the Target?

As students learn about how various materials do or do not fit in a given space, educators provide opportunities to compare and order by length, area, and capacity. Educators may use non-standard measurement tools such as hands or fingers to estimate length, blocks or squares for area, and sand or water for capacity. Educators should take care to use the word "volume" while defining and demonstrating its meaning as students are filling enclosed shapes or objects. While students do not need to say the word "volume", they do need to learn its meaning.

M.EE.6.G.2 Solve real-world and mathematical problems about volume using unit cubes.

IP Initial Precursor DP Distal Precursor PP Proximal Precursor T Target S Successor UN Untested Boxes indicate tested nodes

Rubric of Student Success

M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.

Level 3 Students will	Level 2 Students will	Level 1 Students will
 Use a model or formula to find the volume of cubes and rectangular prisms 	 Use a model to find the volume of a cube or rectangular prism 	Level 1 • Count unit squares on a model to find the volume of a cube or rectangular prism using an active participation response
Successor and Target Students will	Proximal Precursor and Distal Precursor Students will	Initial Precursor Students will
Successor	Students William	Initial Precursor
 Calculate volume of right rectangular prisms with formula Target Solve word problems involving volume of rectangular prisms 	 Proximal Precursor Calculate volume by counting unit cubes Calculate volume of a right rectangular prism by packing unit cubes 	 Recognize separateness Recognize enclosure
	 Distal Precursor Explain volume as a composition of cube units Explain a cube unit Explain volume 	

Instructional Ideas

M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.

Measurement involves a selected attribute of an object such as volume.

The big idea is that the use of standard measurement units simplifies communication about the size of objects.

- Introduce by asking the essential questions.
- While modeling the scenarios, use tangible manipulatives for students to visualize concepts and practice with, such as stackable counting cubes or geoboards.
- Identify contexts for using unit cubes.
- Use unit cubes to count the total.
- Tell students, "Volume is the number of units it takes to fill the inside of a 3-D shape. I need to count the cubes in this shape."
- Model by counting row by row, layer by layer.
- Apply the knowledge of repeated addition to solve for volume.
- Apply the knowledge of multiplication to solve for volume.
- Solve a real-world problem involving volume.
- Create a math word wall.
- Might have to make up your own worksheets but can use the ones provided as inspiration.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Provide students with their own anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

• Go to website for additional instructional resources, materials, and activities for lessons:

the space inside of a 3-dimensional or solid shape measured in units cubed count the unit cubes that fill the shape

The length times the height times the width is volume Multiply the length times the height times the width. How many units long is the side bottom row? How many units long is the first column? How many units long is the bottom row? What is the volume of II Ш this solid shape? width This is the height of the shape. This is the length of the shape. This is the width of the shape. units. units. units. × height The length is The height is The width is × × Finding Volume Level 3 Volume ength

units cubed.

So, the volume of this solid shape is

Volume

15 | Page

take to fill this solid shape? How many cubes does it

1. Make the first bottom row of cubes. How many cubes are in the shape now? Is the shape full? o yes no If yes, this is the volume.	2. Make the other bottom rows of cubes. How many cubes are in the shape now? Is the shape full? o yes o no If yes, this is the volume. If no, go to the next question.	3. Make the second layer of cubes. How many cubes are in the shape now? Is the shape full? o yes o no If yes, this is the volume. If no, go to the next question.	4. Make the other layers of cubes until the shape is full.

cubes to fill up this solid shape. It takes

How many cubes are in the shape now?

units cubed. So, the volume of this solid shape is

Date: Name: **16** | Page

Create Shapes and Find the Volume

Directions: Cut out each net (an unfolded shape). Fold along the dotted lines, and glue the matching letters together. Once you have created each shape, find the volume.

Use the workspace below to figure out the volume of the shape.

Name:

Create Shapes and Find the Volume

Directions: Cut out each net (an unfolded shape). Fold along the dotted lines, and glue the matching letters together. Once you have created each shape, find the volume.

Use the workspace below to figure out the volume of the shape.

18 | Page

Date:

Create Shapes and Find the Volume

Directions: Cut out each net (an unfolded shape). Fold along the dotted lines, and glue the matching letters together. Once you have created each shape, find the volume.

Use the workspace below to figure out the volume of the shape.

Name:

Do With Volume? What Do Cubes Have to

by a 3-D object, measured in cubic units. Volume: the amount of space occupied These units can be centimeters, inches, meters, or any other unit of distance.

length is 3 units, and the width is 3 units. For this object, the height is 3 units, the

= 1 cubic unit

figure. Find the volume of each figure by counting up how many cubic units were used to make each figure. **Directions**: Look at each 3-D figure. Next to each figure is the number of cubic units used to create the

Example:

3 layers 2 layers ٠i

cm³ 3 cm 3 cm 3 cm ٥į

The volume of the figure is

units cubed.

March Math Pacing Guide 6th Grade

M.EE.6.NS.3 - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Learning Goal:

- Level 2-3 I will multiply to solve a math problem.
- Level 1 I will count objects.

Essential Questions:

- How can I make equal groups from this one large group?
- How do I know this is a fair share?
- What is the product?
- How can I solve this multiplication problem using objects?
- How can I solve this multiplication problem using a calculator?

Vocabulary:

• Multiply – to add equal groups using repeated addition.

Mini-Map for M.EE.6.NS.3

Subject: Mathematics
The Number System (NS)

Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.3 Solve two-factor multiplication problems with	M.6.NS.3 Fluently add, subtract, multiply, and divide multi-digit
products up to 50 using concrete objects and/or a calculator.	decimals using the standard algorithm for each operation.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Represent repeated	Demonstrate	Multiply numbers up to	Divide a number (up to
understanding of	addition problems in	multiplication by	12 by factors 1 to 5,	12) by one, two, three,
"separateness" by	the form of an	combining multiple sets	using manipulatives or	four, or five, and
recognizing objects that	equation, including	containing the same	repeated addition (e.g.,	determine the quotient
are not joined together.	displaying the addition	number of objects.	multiply 3 x 5 by adding	using diagrams or
Communicate	of the same numeral	Communicate	5 + 5 + 5 = 15).	manipulatives.
understanding of set by	more than twice (e.g., 3	understanding that the		Communicate
recognizing a group of	+ 3 + 3 + 3) and finding	number of sets times		understanding that the
objects sharing an	the sum by adding the	the number of objects		number of groups times
attribute. Communicate	same number a certain	in each set equals the		the number of objects
understanding of a	number of times (e.g., 3	total number of objects.		in each group equals
subset by recognizing a	+ 3 + 3 + 3 = 12).			the total number of
subset as a set or group	Communicate			objects (multiplication)
of objects within a	understanding of			and that the total
larger set that share an	repeated addition as			number of objects
attribute.	adding the same			divided by the number
	addend a given number			of groups equals the
	of times (e.g., in the			number of objects in
	repeated addition			each group (division).
	equation 3 + 3 + 3 + 3 =			

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successo
	12 the addend 3 is			
	added four times).			
		@ Mestongkh		

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target? In order to solve multiplication problems, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to communicate their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set,

subsets, and separateness.

How is the Distal Precursor related to the Target? As students' understanding of labeling and counting sets

develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators will provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., 4 + 4 + 4 = ?). Students will also learn to represent the problem in writing (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2. then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).

M.EE.6.NS.3 Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Rubric of Student Success

<u>M.EE.6.NS.3</u> - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Level 3 Students will	Level 2 Students will	Level 1 Students will
Level 3I will multiply to solve a math problem.	Level 2 • I will multiply to solve a math problem.	Level 1 ■ I will count objects.
Successor and Target Students will	Proximal Precursor and Distal Precursor Students will	Initial Precursor Students will
Successor		Initial Precursor
 Apply the relationship between multiplication and division Divide by 1, 2, 3, 4, and 5 	 Proximal Precursor Demonstrate the concept of multiplicate 	Recognize separatenessRecognize setRecognize subset
Target	Dietal Bus sums a	
• Multiply by 1, 2, 3, 4, and 5	 Solve repeated addition problems Represent repeated addition with an equation Explain repeated addition Demonstrate the concept of multiplication 	

Instructional Ideas

M.EE.6.NS.3 - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Problems can be solved using various operations.

The big idea is that some problems involving joining equal groups can be solved using multiplication.

- Introduce by asking the essential questions.
- Solve multiplication problems using 2 values whose product is less than or equal to 50.
- Multiply by 1, 2, 3, 4, and 5.
- Teach repeated addition.
- Display the multiplication sign and ask, "When we see this sign what should we do?"
- Introduce and discuss symbols used in multiplication including the equal sign.
- Tell students that when they see a multiplication sign it means to add a certain number a certain about of times.
- Use concrete objects to prove the answer.
- Use a calculator to prove the answer.
- Use manipulatives as needed.
- Use graphic organizers as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

• Go to website for additional instructional resources, materials, and activities for lessons:

4 pine cones Raj is putting pine cones he finds on his hike into boxes. There are 6 boxes. He puts 4 pine cones into each box. How many pine cones are there altogether? How many pine cones are there altogether? Number of pine cones in each box: 6 boxes Number of boxes:

9 rocks Keisha is putting rocks she finds on her hike into rows. There are 5 rows. She puts 9 rocks in each row. How many rocks are there altogether? 5 rows

Number of rows:

Number of rocks in each row:

×

위 W

How many rocks are there altogether?

MIDDLE, Summer Unit, Transition, Let's Go to Summer Cam; Lesson 19c, Math Story Problems - Multiplication and Division, Take a His

Multiplication

Repeated Addition

$$5 + 5 + 5 = 15$$

12	12	24	36	48	09	72	84	96	108	120	132	144
11	11	22	33	44	55	99	77	88	66	110	121	132
10	10	20	30	40	50	09	70	80	90	100	110	120
6	6	18	27	36	45	54	63	72	81	90	66	108
∞	8	16	24	32	40	48	99	64	72	80	88	96
7	7	14	21	28	35	42	49	56	63	70	77	84
9	9	12	18	24	30	36	42	48	54	60	99	72
5	2	10	15	20	25	30	35	40	45	50	55	60
4	4	8	12	16	20	24	28	32	36	40	44	48
3	3	9	6	12	15	18	21	24	27	30	33	36
2	2	4	9	8	10	12	14	16	18	20	22	24
-	1	2	3	4	5	9	7	8	6	10	11	12
	1	2	3	4	5	9	7	8	6	10	11	12

Name_

Date_

Groups Introduction to Multiplication: Repeated

Directions: Solve each equation.

Example:
$$2+2+2+2=\frac{8}{2}$$

u	What do you notice abo	between m	70	nį)
		١,	ю	-	

2+2+2+2+2+2	3+3+3+3+3+3+3
6+6	6+6+6
2×6	3×6
6×2	6×3
3+3+3+3 = 4+4+4 = 3 × 4 = 4 × 3 =	2+2+2+2+2+2=
3+3+3+3+3=	4+4+4+4=
5+5+5=	5+5+5+5=
5 × 3 =	5×4=
3 × 5 =	4×5=

Date. Name

Introduction to Multiplication

Groups Adding

Use the groups of tulips to help you answer each multiplication problem. Learn how to multiply by thinking of numbers as groups.

EXAMPLE:

3 tulips each.

groups with_

tulips in total.

9

There are_

_ tulips each.

groups with_

_tulips in total.

There are_

tulips each	tulips in total.	11
groups with	There are	×

tulips each.

groups with.

tulips in total.

There are_

tulips each	_tulips in total.	11
groups with	There are	×

Multiplication Word Problems

Write the answer in the form of a number sentence.

Example: $2 \times 5 = 10$

ride. How many tickets does it cost for 5 people to ride? The Ferris wheel costs 5 lickets to

An ice cream cone costs \$3. How much will 5 children spend buying ice cream cones?

The roller coaster cars hold 2

ball toss. Each game costs 5 tickets. How many tickets are used? There are 4 people who play the

how many balloons are there If they each have 5 balloons, There are 6 people who sell balloons in the park. in all?

There are 5 children who bought balloons. How many balloons in balloons. Each child bought 2 all did they buy?

More worksheets at www.education.com/worksheets

Mystery Mammal

Multiply. Then fill in the boxes with the letters that go with the numbers to find the answer to the question!

9

 ∞

9

4

9

B

ш

What unusual mammal lays eggs instead of giving birth to live young?

40

12

15

30

12

54

7

9

24

30

54

Color by Multiplication

Do the multiplication calculation and color the shape in the correct color.

visit twinkl.com

March Math Pacing Guide 7th Grade

M.EE.7.G.2 - Recognize geometric shapes with given conditions.

Learning Goal:

- Level 2-3 (2) Students can identify tow and three-dimensional shapes by multiple attributes with support. (3) Students will independently identify two and three-dimensional shapes by multiple attributes.
- Level 1 Students will select the named shape or its attributes from an errorless choice.

Essential Questions:

- How can I decide if two shapes are similar?
- What attributes do the shapes have?
- What attributes do these shapes have in common?

Vocabulary:

- Attribute A property of an object such as size or color.
- Side One of the line segments that make a flat shape (2-dimensional) or one of the faces that make a solid (3-dimensional) object.
- **Vertices** A point where two or more line segments meet. A corner.
- Square A flat shape with 4 straight sides where: all sides have equal length, and every interior angle is a right angle (90°)
- Circle A 2-dimensional shape made by drawing a curve that is always the same distance from a center.
- Triangle A 3-sided flat shape with straight sides.
- **Rectangle** A 4-sided flat shape with straight sides where all interior angles are right angles (90°). Also opposite sides are parallel and of equal length.
- Cube A box-shaped solid object that has six identical square faces.
- Cone A solid (3-dimensional) object that has a circular base joined to a point by a curved side.
- Cylinder two identical flat ends that are circular (or more generally have a curved boundary) and one curved side.
- Sphere A 3-dimensional object shaped like a ball.

Mini-Map for M.EE.7.G.2 Subject: Mathematics

Geometry (G)

Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.2 Recognize geometric shapes with given conditions.	M.7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as	Recognize two-	Communicate attribute	Recognize shapes with	Group together shapes
the object that shares	dimensional shapes	values of a shape, such	specified attributes	with specified attributes
all of the same	such as square, circle,	as number of sides or	(e.g., number of sides,	(e.g., number of sides,
attributes as other	triangle, or rectangle or	number of corners (e.g.,	number of vertices).	number of vertices).
objects in a group.	three-dimensional	a square has four sides).		
Recognize "different" as	shapes such as cube,			
the object that shares	cone, cylinder, or			
some or none of the	sphere.			
attributes as other				
objects in a group.				

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

Being able to recognize shapes given certain conditions requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square"). Then provide multiple examples of the same shape so students can make comparisons (e.g., focusing student attention on the characteristics that make this a particular shape [e.g., a square has 4 sides that are the same size]). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

How is the Distal Precursor related to the Target?

Now that students have experience identifying shapes as "same" and "different", provide instruction that focuses on the attribute of a given shape and making comparisons with other shapes. Educators should take care to use the names of the shapes while defining and describing the attributes. While students do not need to say the shape names, they do need to learn what makes a shape a shape (e.g., a square has four equal straight sides, a triangle has three straight sides, and a cone is an object that narrows from a circular base to a point).

M.EE.7.G.2 Recognize geometric shapes with given conditions.

Rubric of Student Success

M.EE.7.G.2 - Recognize geometric shapes with given conditions.

Level 3 Students will	Level 2 Students will	Level 1 Students will
 Level 3 Independently identify two and three-dimensional shapes by multiple attributes. 	 Level 2 Identify tow and three- dimensional shapes by multiple attributes with support. 	 Select the named shape or its attributes from an errorless choice.
Successor and Target Students will	Proximal Precursor and Distal Precursor Students will	Initial Precursor Students will
Successor		Initial Precursor
 Classify shapes with specified attributes 	Proximal PrecursorDescribe attributes of shapes	Recognize sameRecognize different
Target		
Recognize shapes with specified attributes	 Recognize the following: squares, circles, triangles, rectangles Recognize the following: cubes, cones, cylinders, spheres 	

Instructional Ideas

M.EE.7.G.2 - Recognize geometric shapes with given conditions.

Shapes can be described, classified, and analyzed by their attributes.

The big idea is that many two-dimensional shapes share attributes with three dimensional shapes.

- Introduce by asking the essential questions.
- Match familiar shapes such as squares, rectangles, circles when presented with different size and same orientation.
- Match familiar solids such as spheres, rectangular prisms, cubes, pyramids when presented with different size and same orientation.
- Classify shapes with like attributes.
- Describe attributes of shapes.
- Match a two-dimensional shape with a three-dimensional shape that shares an attribute (identify a square in a cube, identify the circle in a cylinder).
- Model the difference between 2 and 3 dimensional shapes using classroom objects.
- A side is one of the line segments that make a flat shape. Let's count how many sides this shape has. Trace your finger over each side and count aloud.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

• Go to website for additional instructional resources, materials, and activities for lessons:

Parts of Shapes	S	
side	 one of the line segments that makes a flat shape 	+
angle	 a shape made when 2 or more sides or edges meet 	
parallel sides	 sides that are always the same distance apart and will never touch even if they are longer 	+
vertex	 a point where 2 or more sides or edges meet 	
face	 a flat or curved side of a solid shape 	+
əбрə	a line segment where 2 faces meet	
Copyright © 2022 n2y, LLC. All rights reserved. Unique Learning System®, Summer 2022	ddiM	MIDDLE, Summer Unit, Transition, Let's Go to Summer Camp Lesson 24s, Geometry, The Great Outdoors

2-D Flat Shapes	es	
circle	1 curved sideno angles	
square	4 equal sides2 sets of parallel sides4 right angles	
rectangle	4 sides2 sets of equal sides2 sets of parallel sides4 right angles	
triangle	3 sidesno parallel sides3 angles	
right triangle	3 sidesno parallel sides1 right angle2 acute angles	
rhombus	4 equal sides2 sets of parallel sides2 opposite equal acute angles2 opposite equal obtuse angles	

3-D Solid Shapes	sedi	
sphere	no flat facesno edgesno vertices	
eqno	6 flat square faces12 edges8 vertices	
rectangular prism	6 flat rectangle faces12 edges8 vertices	
cone	1 curved face1 flat circle face1 curved edge1 vertex	
cylinder	2 flat circle faces1 curved face2 curved edgesno vertices	
pyramid	4 triangle faces1 square or rectangle face8 edges5 vertices	

MIDDLE, Summer Unit, Transition, Let's Go to Summer Camp Lesson 24a, Geometry, The Great Outdoors, Level 1 & 2

Copyright © 2022 n2y, LLC. All rights reser Unique Learning System®, Summer 2022

MIDDLE, Summer Unit, Transition, Let's Go to Summer Camp Lesson 24a, Geometry, The Great Outdoors, Level 3

Cone 3D Shape Net

Print the template (card stock recommended). Cut along the dotted lines, and then fold along the solid lines.

Use a small amount of glue on the indicated tabs to hold the shape.

Cylinder 3D Shape Net

Print the template (card stock recommended). Cut along the exterior lines, then carefully fold to form the cylinder. Use a small amount of glue on the indicated tabs to stick the shape together.

Key:

= red

= blue

= yellow

___= green

Color by 2D Shapes

Color the shapes to complete the picture.

Key:

) = red

____ = blue

= yellow

= green

= purple

Color by 2D Shapes

Color the shapes to complete the picture.

Key:

___ = green

= brown

= blue

= yellow

Color by 2D Shapes

Color the shapes to complete the picture.

3D Shape Hunt

Use a tally to count the shapes you see.	Tally				
Use a tally to cour	Shape				

Which shape did you see the most? see least? you did Which shape

twinkl rectangular rectangle trapezoid prism cube ova parallelogram hexagonal prism octagon sphere sdnare semicircle triangular hexagon triangle cylinder prism square-based pentagon pyramid rhombus circle cone

sphere pyramid 3D Shape Properties cone cylinder cube rectangular prism

page.	edges vertices faces A real-world example of this shape is a
flap of the title	edges vertices faces A real-world example of this shape is a
d line on each fl	edges vertices faces A real-world example of this shape is a
Cut out the flap book. Cut along the dashed line on each flap of the title page. Put glue here and place under the title page.	edges vertices faces A real-world example of this shape is a
	edges vertices faces A real-world example of this shape is a
	edges vertices faces A real-world example of this shape is a

twinkl.co.uk

3D Shapes

edges_______faces______vertices

edges_____faces_____vertices____

edges______faces______vertices_____

edges______faces/surfaces_____vertices

edges_______faces______vertices_____

edges_____faces______vertices

March Math Pacing Guide 7th Grade

M.EE.7.NS.2.a - Solve multiplication problems with products to 100.

Learning Goal:

- Level 2-3 I will multiply to solve a math problem.
- Level 1 I will count objects.

Essential Questions:

- How can I make equal groups from this one large group?
- How do I know this is a fair share?
- What is the product?
- How can I solve this multiplication problem using objects?
- How can I solve this multiplication problem using a calculator?

Vocabulary:

• Multiply - to add equal groups using repeated addition.

Mini-Map for M.EE.7.NS.2.a

Subject: Mathematics The Number System (NS) Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.2.a Solve multiplication problems with products to	M.7.NS.2.a Understand that multiplication is extended from
100.	fractions to rational numbers by requiring that operations
	continue to satisfy the properties of operations, particularly the
	distributive property, leading to products such as $(-1)(-1) = 1$
	and the rules for multiplying signed numbers. Interpret
	products of rational numbers by describing real-world contexts.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate	Communicate	Demonstrate	Multiply a number up to	Divide a number by a
understanding of	understanding that in	multiplication by	20 by a number 1 to 10	divisor from 1 to 10 to
"separateness" by	repeated addition	combining multiple sets	to determine the	determine the quotient,
recognizing objects that	problems, a single	containing the same	product, using	using manipulatives if
are not joined together.	numerical value is	number of objects.	manipulatives as	needed. Quotients will
Communicate	added repeatedly (e.g.,	Communicate	needed.	not exceed 12.
understanding of a set	6 + 6 + 6) and that one	understanding that the		Communicate
by recognizing a group	way to add a number a	number of sets times		understanding of
of objects sharing an	given number of times	the number of objects		multiplication as the
attribute.	is by using skip-counting	in each set equals the		number of groups times
	as a strategy (e.g., 6 + 6	total number of objects.		the number of objects
	+ 6 can be added as 6,			in each group (with the
	12, 18). Represent			understanding that
	repeated addition			each group contains an
	problems using an			equal number of
	equation showing the			objects) and that the
	addition of the same			total number of objects

numeral the required	(i.e., the product) can
number of times, and	then be divided by the
find the correct sum	number of groups to
using an addition	equal the number of
strategy (e.g., 5 + 5 + 5	objects in each group,
= 15).	and vice versa.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

Solving multiplication problems requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

How is the Distal Precursor related to the Target?

As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators will provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., 4 + 4 + 4 = ?). Students will also learn to represent the problem using a pencil or their communication system (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2, then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).

M.EE.7.NS.2.a Solve multiplication problems with products to 100.

Rubric of Student Success

M.EE.7.NS.2.a - Solve multiplication problems with products to 100.

Level 3 Students will	Level 2 Students will	Level 1 Students will
Level 3I will multiply to solve a problem	Level 2 ■ I will multiply to solve a problem	Level 1 • I will count items
Successor and Target Students will	Proximal Precursor and Distal Precursor Students will	Initial Precursor Students will
Successor		Initial Precursor
 Apply the relationship between multiplication and division Divide by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Target	 Proximal Precursor Demonstrate the concept of multiplication 	Recognize separatenessRecognize subset
• Multiply by 1, 2, 3, 4, 5, 6, 7, 8, 9,	Distal Precursor	
10	 Solve repeated addition problems Represent repeated addition with an equation Explain repeated addition 	

Instructional Ideas

M.EE.7.NS.2.a - Solve multiplication problems with products to 100.

Numbers can be represented, displayed, and compared.

The big idea is that concepts and properties of multiplication are the same when using whole numbers.

- Introduce by asking the essential questions.
- See the 6th grade standard above for additional worksheets if needed as this is the same but goes to 100 instead of 50.
- Demonstrate repeated addition.
- Solve multiplication problems up to 100.
- Allow students to have their own anchor charts.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

• Go to website for additional instructional resources, materials, and activities for lessons:

12	12	24	36	48	09	72	84	96	108	120	132	144
11	11	22	33	44	55	99	77	88	66	110	121	132
10	10	20	30	40	50	09	70	80	90	100	110	120
6	6	18	27	36	45	54	63	72	81	90	66	108
∞	8	16	24	32	40	48	56	64	72	80	88	96
7	2	14	21	28	35	42	49	56	63	70	77	84
9	9	12	18	24	30	36	42	48	54	60	99	72
5	5	10	15	20	25	30	35	40	45	50	55	90
4	4	8	12	16	20	24	28	32	36	40	44	48
3	3	9	6	12	15	18	21	24	27	30	33	36
2	2	4	9	8	10	12	14	16	18	20	22	24
1	1	2	3	4	5	9	2	8	6	10	11	12
	1	2	3	4	5	9	7	8	6	10	11	12

March Math Pacing Guide 7th Grade

*** See February 8th Grade Pacing Guide for the following standards to be reviewed again or you can focus on other topics that need additional review with students before administering the DLM to 8th graders.

- <u>M.EE.8.G.5</u> Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.
- M.EE.8.G.9 Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms).

Credits

Websites Used for Worksheets and Lesson Ideas:

- https://www.education.com
- https://www.twinkl.com
- https://www.superteacherworksheets.com
- https://www.easyteacherworksheets.com
- https://www.mathworksheets4kids.com
- https://www.math-salamanders.com
- https://www.math-drills.com
- https://www.mathsisfun.com/definitions/index.html

Resources Used to Help Create the Pacing Guide:

DLM Essential Elements Unpacking

• https://www.dlmpd.com/dlm-essential-elements-unpacking

Instructional Resources for YE Model States

• https://dynamiclearningmaps.org/instructional-resources-ye/mathematics

Dynamic Learning Maps

• https://dynamiclearningmaps.org

Unique Learning System

• https://www.n2y.com/unique-learning-system

Pedrette Monako usuan kunakou kunako ke kunako ka kunako ke ka kunako ka kunako ka kunako kun