Essential Elements Math Pacing Guide

March

Background

The Essential Elements Math Pacing Guide was inspired by realizing that there is a small amount of information found on the internet to help support educators who teach those who follow an alternate curriculum for our amazing 1% of the student population in education. I wanted to create something that could help serve as a guide, a support, an understanding of how to hold our students to high academic achievement, just like their regular education peers.

Regular education materials are abundant and come with pacing guides with how to implement the prescribed curriculum that the school decided to buy into. Within those curriculums, a good majority of publishers incorporated how to differentiate Instruction for struggling learners, for English Language Learners and/or English as a Second Language learners. However, there does not seem to be a supplementary curriculum that aligns to how to modify instruction and materials for those who follow the alternate curriculum so the 1% of students with disabilities aligned to the alternate curriculum could also learn a modified version of the same materials as their non-disabled peers in an inclusive setting.

Your partner in education, Jeanette Nowak

Updated July 2022

Table of Contents

March Outline 4
How to Access Math Instruction and Materials from Unique 5
Understanding Differentiated Levels in Unique 6
Measuring Success by the Essential Elements Standards 6
March Math Pacing Guide $6^{\text {th }}$ Grade 7-35
March Math Pacing Guide $7^{\text {th }}$ Grade 36-64
March Math Pacing Guide $8^{\text {th }}$ Grade 65
Credits 66

March Outline

Standards covered during February:

- M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.
- M.EE.6.NS.3 - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.
- M.EE.7.G.2 - Recognize geometric shapes with given conditions.
- M.EE.7.NS.2.a - Solve multiplication problems with products to 100.
- M.EE.8.G.5 - Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.
- M.EE.8.G.9 - Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms).

According to the Dynamic Learning Maps (DLM) website, these are the commonly tested standards that are used for the DLM assessment.

1. https://www.n2y.com/unique-learning-system/
2. Log in using the provided username and password you received
3. Click on Unique Learning System
4. Click on the three lines \longrightarrow Unle learning system
5. Select Monthly Lessons/Unit Lessons共
6. Select Math
a. When selecting materials, select PDF icon to save and print

Understanding Differentiated Levels in Unique

- Level 3 Learners - can read text and can participate more independently in the lesson (Independent)
- Level 2 Learners- require pictorial support and require mild to moderate support to participate in the lesson (Supported)
- Level 1 Learners- require extensive supports to participate in the lesson (Participatory).

Measuring Success by the Essential Elements Standards

Students who take DLM assessments are instructed and assessed on Essential Elements. Essential Elements are grade-specific expectations about what students with the most significant cognitive disabilities should know and be able to do. The Essential Elements relate to college and career readiness standards for students in the general population.

March Math Pacing Guide
 $6^{\text {th }}$ Grade

M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.

Learning Goal:

- Level 2-3-(2) Use a model to find the volume of a cube or rectangular prism. (3) Use a model or formula to find the volume of cubes and rectangular prisms.
- Level 1 - Count unit squares on a model to find the volume of a cube or rectangular prism using an active participation response.

Essential Questions:

- What is volume?
- How do I know when to use unit cubes or unit squares?
- What is the difference between area and volume?
- How can I organize the information to solve for volume?

Vocabulary:

- Unit - A general term meaning 1.
- Volume - The size of a surface.

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.G.2 Solve real-world and mathematical problems about volume using unit cubes.	M.6.G.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the
volume is the same as would be found by multiplying the edge	
lengths of the prism. Apply the formulas $V=l$ wh and $V=b h$ to	
find volumes of right rectangular prisms with fractional edge	
lengths in the context of solving real-world and mathematical	
problems.	

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate understanding of "separateness" by recognizing objects that are not joined together. Recognize enclosure as an enclosed space that lies within a boundary that distinguishes it from the space that lies outside the boundary.	Communicate understanding that volume is the space enclosed by a shape or an object, that a unit cube is a cube with edge lengths of one unit and a volume of one cubic unit, and that volume can be measured by counting the number of unit cubes needed to completely fill a container or space.	Calculate the volume of a solid figure by counting the total number of unit cubes in a solid figure. Calculate the volume of a rectangular prism by packing the box with unit cubes and counting them.	Solve word problems involving the volume of a rectangular prism by determining the volume of the prism. (The volume of a rectangular prism should be determined by packing the prism with unit cubes.)	the volume formula (volume = height x length x width).

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target? In order to solve problems using unit cubes, students at this level start by exploring objects and experiencing putting various materials into various containers. Educators demonstrate the language of in/out, more/less, big/little, longer/shorter, taller/smaller, wider/thinner, etc.

How is the Distal Precursor related to the Target?
As students learn about how various materials do or do not fit in a given space, educators provide opportunities to compare and order by length, area, and capacity. Educators may use non-standard measurement tools such as hands or fingers to estimate length, blocks or squares for area, and sand or water for capacity.Educators should take care to use the word "volume" while defining and demonstrating its meaning as students are filling enclosed shapes or objects. While students do not need to say the word "volume", they do need to learn its meaning.
M.EE.6.G. 2 Solve real-world and mathematical problems about volume using unit cubes.

Map Key	
IP	Initial Precursor
DP	Distal Precursor
PP	Proximal Precursor
T	Target
S	Successor
UN	Untested
Boxes indicate tested	
nodes	

Rubric of Student Success

M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.

11 | Page

Instructional Ideas

M.EE.6.G.2 - Solve real-world and mathematical problems about volume using unit cubes.

Measurement involves a selected attribute of an object such as volume.
The big idea is that the use of standard measurement units simplifies communication about the size of objects.

- Introduce by asking the essential questions.
- While modeling the scenarios, use tangible manipulatives for students to visualize concepts and practice with, such as stackable counting cubes or geoboards.
- Identify contexts for using unit cubes.
- Use unit cubes to count the total.
- Tell students, "Volume is the number of units it takes to fill the inside of a 3-D shape. I need to count the cubes in this shape."
- Model by counting row by row, layer by layer.
- Apply the knowledge of repeated addition to solve for volume.
- Apply the knowledge of multiplication to solve for volume.
- Solve a real-world problem involving volume.
- Create a math word wall.
- Might have to make up your own worksheets but can use the ones provided as inspiration.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Provide students with their own anchor chart.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
- the space inside of a 3-dimensional or solid shape
volume
- measured in units cubed
- count the

unit cubes that fill the shape

13|Page

14 \| Page
Finding Volume
Level 1\& 2
Volume

1. Make the first bottom row of cubes.
How many cubes are in the shape now?
Is the shape full?
If yes, this is the volume.
If no, go to the next question.
2. Make the other bottom rows of cubes.
How many cubes are in the shape now?
Is the shape full?
If yes, this is the volume.
If no, go to the next question.
3. Make the second layer of cubes.
How many cubes are in the shape now?
Is the shape full? $\quad 2$ yes
If yes, this is the volume.
If no, go to the next question.
4. Make the other layers of cubes until the
shape is full.
How many cubes are in the shape now?

\therefore. It takes ___ cubes to fill up this solid shape.

'pəqno ş!uun

Use the workspace below to figure out the volume of the shape.

16 | Page

17 | Page

Use the workspace below to figure out the volume of the shape.

18 | Page
Name: \quad What Do Cubes Have to Do With Volume?

Volume: the amount of space occupied
by a 3-D object, measured in cubic units.
These units can be centimeters, inches.
meters, or any other unit of distance.
length is 3 units, and the width is 3 units.

1 Education.com

19 | Page
Name:
Model Volume for Yourself!
Directions: Use sugar cubes, ice cubes or blocks to build each cube or rectangular prism. Then, count up the
cubes and write down the volume.

Example: Build a figure with a length
of 2 cubes, a width of 3 cubes, and a
height of 1 cube.

The volume of the figure is
units cubed.
The volume of the figure is
units cubed.
The volume of the figure is

The volume of the figure is
units cubed.

1. Build a figure with a length of 1 cube, a
width of 2 cubes, and a height of 4 cubes.
2. Build a figure with a length of 3 cubes, a
width of 2 cubes, and a height of 2 cubes.
width of 2 cubes, and a height of 2 cubes.

'əqnว т !

3. Build a figure with a length of 2 cubes, a
width of 1 cube, and a height of 5 cubes.

พоว•บo!noonpaโ!

20 | P a g e

March Math Pacing Guide
 $6^{\text {th }}$ Grade

M.EE.6.NS. 3 - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Learning Goal:

- Level 2-3 - I will multiply to solve a math problem.
- Level 1 - I will count objects.

Essential Questions:

- How can I make equal groups from this one large group?
- How do I know this is a fair share?
- What is the product?
- How can I solve this multiplication problem using objects?
- How can I solve this multiplication problem using a calculator?

Vocabulary:

- Multiply - to add equal groups using repeated addition.

Mini-Map for M.EE.6.NS. 3
 Subject: Mathematics
 The Number System (NS)
 Grade: 6

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.6.NS.3 Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.	M.6.NS.3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate understanding of "separateness" by recognizing objects that are not joined together. Communicate understanding of set by recognizing a group of objects sharing an attribute. Communicate understanding of a subset by recognizing a subset as a set or group of objects within a larger set that share an attribute.	Represent repeated addition problems in the form of an equation, including displaying the addition of the same numeral more than twice (e.g., 3 $+3+3+3$) and finding the sum by adding the same number a certain number of times (e.g., 3 $+3+3+3=12$). Communicate understanding of repeated addition as adding the same addend a given number of times (e.g., in the repeated addition equation $3+3+3+3=$	Demonstrate multiplication by combining multiple sets containing the same number of objects. Communicate understanding that the number of sets times the number of objects in each set equals the total number of objects.	Multiply numbers up to 12 by factors 1 to 5 , using manipulatives or repeated addition (e.g., multiply 3×5 by adding $5+5+5=15$).	Divide a number (up to 12) by one, two, three, four, or five, and determine the quotient using diagrams or manipulatives. Communicate understanding that the number of groups times the number of objects in each group equals the total number of objects (multiplication) and that the total number of objects divided by the number of groups equals the number of objects in each group (division).

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
	12, the addend 3 is added four times).			

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

In order to solve multiplication problems, students must learn to organize items into groups/sets based on a common characteristic such as size, color, shape, or texture. Students learn how to sort items by separating a group of items into two groups (e.g., music I like/music I don't like; red fidgets/black fidgets). As students gain comfort sorting items into sets, they are encouraged to communicate their thought process by identifying and naming the characteristic that determines the set (e.g., color, length). Activities that require students to engage actively with the items will foster understanding of set, subsets, and separateness.

How is the Distal Precursor related to the Target?
As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators will provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., $4+4+4$ $=$?). Students will also learn to represent the problem in writing (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2 , then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).
M.EE.6.NS. 3 Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Rubric of Student Success

M.EE.6.NS. 3 - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Instructional Ideas

M.EE.6.NS.3 - Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator.

Problems can be solved using various operations.
The big idea is that some problems involving joining equal groups can be solved using multiplication.

- Introduce by asking the essential questions.
- Solve multiplication problems using 2 values whose product is less than or equal to 50 .
- Multiply by $1,2,3,4$, and 5 .
- Teach repeated addition.
- Display the multiplication sign and ask, "When we see this sign what should we do?"
- Introduce and discuss symbols used in multiplication including the equal sign.
- Tell students that when they see a multiplication sign it means to add a certain number a certain about of times.
- Use concrete objects to prove the answer.
- Use a calculator to prove the answer.
- Use manipulatives as needed.
- Use graphic organizers as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:
Name:
Math Story 1
Multiplication
Raj is putting pine cones he finds on his hike into boxes.
There are 6 boxes. He puts 4 pine cones into each box.
How many pine cones are there altogether?
6 boxes
Number of boxes:
Number of pine cones in each box:
Keisha is putting rocks she finds on her hike into rows.
There are 5 rows. She puts 9 rocks in each row.
How many rocks are there altogether?
5 rows

\simeq	\simeq	\pm	\％	¢	8	N	¢	\＆	®	O	$\stackrel{\sim}{\text { a }}$	ま
$=$	$=$	～	m	寸	～	\bigcirc	N	®	8	은	$\bar{\square}$	－
앙	앙	－	¢	\％	in	8	2	\％	8	\bigcirc	\bigcirc	인
a	a	\bigcirc	え	\％	ヶ	岳	饣	N	$\bar{\infty}$	8	\％	을
∞	∞	\bigcirc	d	m	\％	¢	in	¢	N	8	®	ஃ
－	－	\pm	$\bar{\sim}$	$\stackrel{\sim}{\sim}$	\％	\％	\％	i	\％	\bigcirc	下	あ
\bigcirc	\bigcirc	\simeq	\ldots	\pm	¢	\％	f	$\stackrel{\circ}{\text { ¢ }}$	边	8	8	～
in	in	\bigcirc	n	－	～	¢	m	\％	\＆	in	～	8
－	－	∞	\simeq	\bigcirc	－	d	$\stackrel{\sim}{\sim}$	m	\％	\％	ま	$\stackrel{\circ}{\text { ¢ }}$
m	m	\bigcirc	a	\simeq	๓	\propto	$\bar{\sim}$	む	え	¢	m	\％
\sim	\sim	－	\bigcirc	－	\bigcirc	\simeq	\pm	\bigcirc	¢	$\stackrel{1}{1}$	～	d
－	－	\sim	m	－	in	\bigcirc	－	∞	の	\bigcirc	$=$	\simeq
	－	\sim	m	－	in	\bigcirc	－	∞	a	\bigcirc	$=$	\simeq

Name _ Introduction to Multiplication
Learn how to multiply by thinking of numbers as groups.
Use the groups of tulips to help you answer each multiplication prob

Multiplication Word Problems
Use the picture above to answer the questions.
Write the answer in the form of a number sentence.
Example: $2 \times 5=10$
Mystery
Multiply. Then fill in the boxes with the letters that go
with the numbers to find the answer to the question?

$\sim m \times \underbrace{\square}_{\underline{V}}$
$\begin{array}{cc:c}\nabla & \nabla \\ & \times & \square\end{array}$
$\begin{array}{rr}6 \\ \times & \square\end{array}$
$\infty \begin{array}{ll}\infty & 6 \\ \times\end{array} \underbrace{}_{\infty}$

$\stackrel{\sim}{\sim}$

\square
\times to live young?

1

$34 \mid P$ age

March Math Pacing Guide
 $7^{\text {th }}$ Grade

M.EE.7.G.2 - Recognize geometric shapes with given conditions.

Learning Goal:

- Level 2-3-(2) Students can identify tow and three-dimensional shapes by multiple attributes with support. (3) Students will independently identify two and three-dimensional shapes by multiple attributes.
- Level 1 - Students will select the named shape or its attributes from an errorless choice.

Essential Questions:

- How can I decide if two shapes are similar?
- What attributes do the shapes have?
- What attributes do these shapes have in common?

Vocabulary:

- Attribute - A property of an object such as size or color.
- Side - One of the line segments that make a flat shape (2-dimensional) or one of the faces that make a solid (3-dimensional) object.
- Vertices - A point where two or more line segments meet. A corner.
- Square - A flat shape with 4 straight sides where: all sides have equal length, and every interior angle is a right angle (90°)
- Circle - A 2-dimensional shape made by drawing a curve that is always the same distance from a center.
- Triangle - A 3-sided flat shape with straight sides.
- Rectangle - A 4-sided flat shape with straight sides where all interior angles are right angles $\left(90^{\circ}\right)$. Also opposite sides are parallel and of equal length.
- Cube - A box-shaped solid object that has six identical square faces.
- Cone - A solid (3-dimensional) object that has a circular base joined to a point by a curved side.
- Cylinder - two identical flat ends that are circular (or more generally have a curved boundary) and one curved side.
- Sphere - A 3-dimensional object shaped like a ball.

Mini-Map for M.EE.7.G. 2

Subject: Mathematics
Geometry (G)
Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.G.2 Recognize geometric shapes with given conditions.	M.7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Recognize "same" as the object that shares all of the same attributes as other objects in a group. Recognize "different" as the object that shares some or none of the attributes as other objects in a group.	Recognize twodimensional shapes such as square, circle, triangle, or rectangle or three-dimensional shapes such as cube, cone, cylinder, or sphere.	Communicate attribute values of a shape, such as number of sides or number of corners (e.g., a square has four sides).	Recognize shapes with specified attributes (e.g., number of sides, number of vertices).	Group together shapes with specified attributes (e.g., number of sides, number of vertices).

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?
Being able to recognize shapes given certain conditions requires a student to recognize when basic objects and shapes are the same or different. Work on this understanding by providing students with a shape and naming it (e.g., "this is a square" Then provide multiple examples of the same shape so students can make comparisons (e.g., focusing student attention on the characteristics that make this a particular shape [e.g., a square has 4 sides that are the same size]). As students explore shapes, label them and describe them as same or different.

NOTE: When presenting the same shape for comparison, do use shapes with different colors, textures, sizes, and orientation so that students understand the attribute that makes it that shape (e.g., 4 sides that are the same size).

M.EE.7.G.2 Recognize geometric shapes with given conditions.

Rubric of Student Success

M.EE.7.G.2 - Recognize geometric shapes with given conditions.

Level 3 Students will... Level 3 - Independently identify two and three-dimensional shapes by multiple attributes.	Level 2 Students will... Level 2 - Identify tow and threedimensional shapes by multiple attributes with support.	Level 1 Students will... Level 1 - Select the named shape or its attributes from an errorless choice.
Successor and Target Students will...	Proximal Precursor and Distal Precursor Students will...	Initial Precursor Students will...
Successor - Classify shapes with specified attributes	Proximal Precursor - Describe attributes of shapes	Initial Precursor - Recognize same - Recognize different
Target - Recognize shapes with specified attributes	Distal Precursor - Recognize the following: squares, circles, triangles, rectangles - Recognize the following: cubes, cones, cylinders, spheres	

Instructional Ideas

M.EE.7.G.2 - Recognize geometric shapes with given conditions.

Shapes can be described, classified, and analyzed by their attributes.
The big idea is that many two-dimensional shapes share attributes with three dimensional shapes.

- Introduce by asking the essential questions.
- Match familiar shapes such as squares, rectangles, circles when presented with different size and same orientation.
- Match familiar solids such as spheres, rectangular prisms, cubes, pyramids when presented with different size and same orientation.
- Classify shapes with like attributes.
- Describe attributes of shapes.
- Match a two-dimensional shape with a three-dimensional shape that shares an attribute (identify a square in a cube, identify the circle in a cylinder).
- Model the difference between 2 and 3 dimensional shapes using classroom objects.
- A side is one of the line segments that make a flat shape. Let's count how many sides this shape has. Trace your finger over each side and count aloud.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

42 \| Page

43 | Page

44 | Page
Attributes of Shapes

Look at the objects. Find the object that is shaped like a sphere. Put the matching sphere shape over that object.	Answer the questions about the sphere.
How many	
faces?	
How many	
vertices?	

Attributes of Shapes
Level 3

Look at the objects. Find the object that is shaped like a cylinder. Put the matching cylinder shape over that object.	Answer the questions about the cylinder.
How many	
faces?	

Cone 3D Shape Net

Print the template (card stock recommended). Cut along the dotted lines, and then fold along the solid lines. Use a small amount of glue on the indicated tabs to hold the shape.

Cube 3D Shape Net

Print the template (card stock recommended). Cut along the dotted lines, and then fold along the solid lines. Use a small amount of glue on the indicated tabs to hold the shape.

Cylinder 3D Shape Net

Print the template (card stock recommended). Cut along the exterior lines, then carefully fold to form the cylinder. Use a small amount of glue on the indicated tabs to stick the shape together.

50 \| Page

51 \| age

52 | Page

53 | Page

54 \| Page

55 | Page

56 | P a g e

March Math Pacing Guide

$7^{\text {th }}$ Grade
M.EE.7.NS.2.a - Solve multiplication problems with products to 100 .

Learning Goal:

- Level 2-3 - I will multiply to solve a math problem.
- Level 1 - I will count objects.

Essential Questions:

- How can I make equal groups from this one large group?
- How do I know this is a fair share?
- What is the product?
- How can I solve this multiplication problem using objects?
- How can I solve this multiplication problem using a calculator?

Vocabulary:

- Multiply - to add equal groups using repeated addition.

Mini-Map for M.EE.7.NS.2.a
Subject: Mathematics
The Number System (NS)
Grade: 7

Learning Outcome

DLM Essential Element	Grade-Level Standard
M.EE.7.NS.2.a Solve multiplication problems with products to	M.7.NS.2.a Understand that multiplication is extended from fractions to rational numbers by requiring that operations 100.
continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret	
products of rational numbers by describing real-world contexts.	

Linkage Level Descriptions

Initial Precursor	Distal Precursor	Proximal Precursor	Target	Successor
Communicate understanding of "separateness" by recognizing objects that are not joined together.	Communicate understanding that in repeated addition problems, a single numerical value is added repeatedly (e.g., understanding of a set by recognizing a group of objects sharing an attribute.	Demonstrate multiplication by combining multiple sets way to add a number a given number of times is by using skip-counting as a strategy (e.g., $6+6$ number of objects. Communicate understanding that the number of sets times be added as 6,	Multiply a number up to the number of objects in each set equals the total number of objects. to determine the product, using manipulatives as needed.	Divide a number by a divisor from 1 to 10 to determine the quotient, using manipulatives if needed. Quotients will repeated addition problems using an equation showing the addition of the same

	numeral the required number of times, and find the correct sum using an addition strategy (e.g., $5+5+5$ =15).		(i.e., the product) can then be divided by the number of groups to equal the number of objects in each group, and vice versa.

Initial Precursor and Distal Precursor Linkage Level Relationships to the Target

How is the Initial Precursor related to the Target?

Solving multiplication problems requires a student to be able to recognize that two or more sets or groups of items exist. Work on this skill using a variety of sets. Help students recognize when items are grouped together into a set or separated out. As educators present a set, they label it (e.g., two balls, one marker, three CDs), count the items, label it again, and encourage students to use numerals to label and count the separate sets. Use tools like the ten-frame to point out whole and parts (e.g., a row of 5 dots and a row of 4 dots are parts or subsets of 9).

$$
0000^{\circ}
$$

How is the Distal Precursor related to the Target?
As students' understanding of labeling and counting sets develops, they will begin working on adding items to a set and combining sets to create a new set. Additionally, students will work on developing an understanding of equal shares by actively participating in one-to-one distribution of objects to person, objects to objects, and objects to available space (e.g., giving each person in the group two pencils; given four counters, they would line up four more counters in front of or on top of the first set; given three chairs at a table, the student would place a cup on the table for each available chair). As students learn to work with sets and connect their understanding of equal shares to sets, educators will provide students experience with combining multiple sets (e.g., 3 sets with 4 counters each) and represent the problem (e.g., $4+4+4$ $=$?). Students will also learn to represent the problem using a pencil or their communication system (e.g., the student is shown 4 equal sets each with 2 counters. The student counts the first set and writes a 2 or indicates 2 , then writes or indicates the plus sign. The student repeats for all 4 sets and then indicates the equal sign and solves the problem.).
M.EE.7.NS.2.a Solve multiplication problems with products to 100 .

Rubric of Student Success

M.EE.7.NS.2.a - Solve multiplication problems with products to 100 .

Level 3 Students will... Level 3 - I will multiply to solve a problem	Level 2 Students will... Level 2 - I will multiply to solve a problem	Level 1 Students will... Level 1 - I will count items
Successor and Target Students will...	Proximal Precursor and Distal Precursor Students will...	Initial Precursor Students will...
Successor - Apply the relationship between multiplication and division - Divide by $1,2,3,4,5,6,7,8,9,10$	Proximal Precursor - Demonstrate the concept of multiplication	Initial Precursor - Recognize separateness - Recognize subset
Target - Multiply by $1,2,3,4,5,6,7,8,9$, 10	Distal Precursor - Solve repeated addition problems - Represent repeated addition with an equation - Explain repeated addition	

Instructional Ideas

M.EE.7.NS.2.a - Solve multiplication problems with products to 100.

Numbers can be represented, displayed, and compared.
The big idea is that concepts and properties of multiplication are the same when using whole numbers.

- Introduce by asking the essential questions.
- See the $6^{\text {th }}$ grade standard above for additional worksheets if needed as this is the same but goes to 100 instead of 50 .
- Demonstrate repeated addition.
- Solve multiplication problems up to 100.
- Allow students to have their own anchor charts.
- Use manipulatives as needed.
- Students may use a calculator if needed.
- Included worksheets are examples of what to look for when finding additional materials that best fits your student's needs.

Additional Instructional Ideas

- Go to website for additional instructional resources, materials, and activities for lessons:

\simeq	\simeq	\pm	\％	¢	8	N	¢	\＆	®	O	$\stackrel{\sim}{\text { a }}$	ま
$=$	$=$	～	m	寸	～	\bigcirc	N	®	8	은	$\bar{\square}$	－
앙	앙	－	¢	\％	in	8	2	\％	8	\bigcirc	\bigcirc	인
a	a	\bigcirc	え	\％	ヶ	岳	饣	N	$\bar{\infty}$	8	\％	을
∞	∞	\bigcirc	d	m	\％	¢	in	¢	N	8	®	ஃ
－	－	\pm	$\bar{\sim}$	$\stackrel{\sim}{\sim}$	\％	\％	\％	i	\％	\bigcirc	下	あ
\bigcirc	\bigcirc	\simeq	\ldots	\pm	¢	\％	f	$\stackrel{\circ}{\text { ¢ }}$	边	8	8	～
in	in	\bigcirc	n	－	～	¢	m	\％	\＆	in	～	8
－	－	∞	\simeq	\bigcirc	－	d	$\stackrel{\sim}{\sim}$	m	\％	\％	ま	$\stackrel{\circ}{\text { ¢ }}$
m	m	\bigcirc	a	\simeq	๓	\propto	$\bar{\sim}$	む	え	¢	m	\％
\sim	\sim	－	\bigcirc	－	\bigcirc	\simeq	\pm	\bigcirc	¢	$\stackrel{1}{1}$	～	d
－	－	\sim	m	－	in	\bigcirc	－	∞	の	\bigcirc	$=$	\simeq
	－	\sim	m	－	in	\bigcirc	－	∞	a	\bigcirc	$=$	\simeq

March Math Pacing Guide

$7^{\text {th }}$ Grade
*** See February $8^{\text {th }}$ Grade Pacing Guide for the following standards to be reviewed again or you can focus on other topics that need additional review with students before administering the DLM to $8^{\text {th }}$ graders.

- M.EE.8.G.5 - Compare any angle to a right angle, and describe the angle as greater than, less than, or congruent to a right angle.
- M.EE.8.G.9 - Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (limited to perimeter and area of rectangles and volume of rectangular prisms).

Credits

Websites Used for Worksheets and Lesson Ideas:

- https://www.education.com
- https://www.twinkl.com
- https://www.superteacherworksheets.com
- https://www.easyteacherworksheets.com
- https://www.mathworksheets4kids.com
- https://www.math-salamanders.com
- https://www.math-drills.com
- https://www.mathsisfun.com/definitions/index.html

Resources Used to Help Create the Pacing Guide:

DLM Essential Elements Unpacking

- https://www.dlmpd.com/dlm-essential-elements-unpacking

Instructional Resources for YE Model States

- https://dynamiclearningmaps.org/instructional-resources-ye/mathematics

Dynamic Learning Maps

- https://dynamiclearningmaps.org

Unique Learning System

- https://www.n2y.com/unique-learning-system

